Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover evidence to support controversial theory of 'buckyball' formation

16.09.2013
Discovery could have a bearing on medical imaging, cancer treatment

Researchers at the Virginia Tech Carilion Research Institute have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up.

Technically known as fullerenes, these spherical carbon molecules have shown great promise for uses in medicine, solar energy, and optoelectronics. But finding applications for these peculiar structures has been difficult because no one knows exactly how they are formed.

Two theories compete regarding the molecular mechanisms that make fullerenes. The first and oldest is the "bottom-up" theory, which says these carbon cages are built atom-by-atom, like the construction of a Lego model. The second, more recent, theory takes a "top-down" approach, suggesting that fullerenes form when much larger structures break into constituent parts.

After several years of debate with little more than computational models in support of how the top-down theory might work, researchers led by Harry Dorn, a professor at the research institute, have discovered the missing link: asymmetrical fullerenes that are formed from larger structures appear to settle into stable fullerenes.

The discovery appeared online Sept. 15 in the journal Nature Chemistry.

"Understanding the molecular mechanics of how fullerenes and their many variations are formed is not just a curiosity," said Dorn, who has been researching metallofullerenes – fullerenes with a few atoms of metal held within – for more than two decades. "It would give us insights into new, better ways to prepare them. Fullerenes and metallofullerenes are already involved in hundreds of biomedical studies. The ability to create large numbers of a wide variety of metallofullerenes would be a giant building block that would take the field to new heights."

The medicinal promise of metallofullerenes stems from the atoms of metal caged within them. Because the metal atoms are trapped in a cage of carbon, they do not react with the outside world, making their side-effect risks low in both number and intensity.

For example, one particular metallofullerene with gadolinium at its core has been shown to be up to 40 times better as a contrast agent in magnetic resonance imaging scans for diagnostic imaging than options now commercially available. Current experiments are also directed at using metallofullerenes to carry therapeutic radioactive ions to target cancer tissue.

"A better understanding of the formation of fullerenes and metallofullerenes may allow the development of new contrast agents for magnetic resonance imaging at commercial-level quantities," said Jianyuan Zhang, a graduate student in Dorn's laboratory and the first author of the paper. "These larger quantities will facilitate a next generation of contrast agents with multiple targets."

Dorn's new study hinges on the isolation and purification of approximately 100 micrograms — roughly the size of several specks of pepper — of a particular metallofullerene consisting of 84 carbon atoms with two additional carbon atoms and two yttrium atoms trapped inside.

When Dorn and his colleagues determined the metallofullerene's exact structure using nuclear magnetic resonance imaging and single crystal X-ray analysis, they made a startling discovery —the asymmetrical molecule could theoretically collapse to form nearly every known fullerene and metallofullerene.

All the process would require would be a few minor perturbations — the breaking of only a few molecular bonds — and the cage would become highly symmetrical and stable.

This insight, Dorn said, supports the theory that fullerenes are formed from graphene — a single sheet of carbon just one atom thick — when key molecular bonds begin to break down. And although the study focuses on fullerenes with yttrium trapped inside, it also shows that the carbon distribution looks similar for empty cages, suggesting regular fullerenes form the same way.

"Not only are the findings presented in Dr. Dorn's paper extremely interesting, but the study represents a real milestone in the field," said Takeshi Akasaka, a professor of chemistry at the University of Tsukuba in Japan and an authority in the field of metallofullerene research, who was not involved in the study. "The study presents physical evidence for a process of metallofullerene creation that most scientists in the field initially scoffed at."

Dorn said scientists have questioned the bottom-up theory of fullerene formation ever since it was discovered that fullerenes were formed from asteroids colliding with Earth and fullerenes were found in interstellar space.

"With this study, we hope to be that much closer to understanding their formation and creating entirely new classes of fullerenes and metallofullerenes that could be useful in medicine as well as in other fields that haven't even occurred to us yet," Dorn said.

"Dr. Dorn's insight into the fundamental process whereby fullerenes are formed is a major contribution to the field," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute. "Understanding the molecular steps in their formation is key to realizing fully the potential of this versatile and potentially potent family of chemicals in medicine. Dr. Dorn's contributions to understanding these molecules are paving the way for the formulation of targeted novel diagnostics, therapeutics, and the combination of both—theranostics. This approach will provide an important component for tomorrow's arsenal of precision medicine."

Dorn and Zhang's research collaborators include Faye Bowles, a graduate student researcher; Marilyn Olmstead, a professor of chemistry; and Alan Balch, a distinguished professor of chemistry; all from the University of California, Davis.

Also participating were Daniel Bearden, a research scientist with the Hollings Marine Laboratory at the National Institute of Standards and Technology, and Tim Fuhrer, now an assistant professor of chemistry at Radford University.

Researchers from Virginia Tech who worked on the study include Richard Helm, an associate professor of biochemistry; W. Keith Ray, a senior research associate in biochemistry; Youqing Ye, a graduate student in chemistry; Caitlyn Dixon, an undergraduate student in chemistry; and Kim Harich, an analytical chemist senior in biochemistry.

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>