Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Dynamic Behavior Of Progenitor Cells In Brain

10.05.2013
Cells aid in scar formation after injury to central nervous system

By monitoring the behavior of a class of cells in the brains of living mice, neuroscientists at Johns Hopkins discovered that these cells remain highly dynamic in the adult brain, where they transform into cells that insulate nerve fibers and help form scars that aid in tissue repair.


Ethan Hughes and Dwight Bergles

Montage of three images collected at one-week intervals showing an oligodendrocyte precursor cell migrating towards a lesion (white).

Published online April 28 in the journal Nature Neuroscience, their work sheds light on how these multipurpose cells communicate with each other to maintain a highly regular, grid-like distribution throughout the brain and spinal cord. The disappearance of one of these so-called progenitor cells causes a neighbor to quickly divide to form a replacement, ensuring that cell loss and cell addition are kept in balance.

“There is a widely held misconception that the adult nervous system is static or fixed, and has a limited capacity for repair and regeneration,” says Dwight Bergles, Ph.D., professor of neuroscience and otolaryngology at the Johns Hopkins University School of Medicine. “But we found that these progenitor cells, called oligodendrocyte precursor cells (OPCs), are remarkably dynamic. Unlike most other adult brain cells, they are able to respond to the repair needs around them while maintaining their numbers.”

OPCs can mature to become oligodendrocytes — support cells in the brain and spinal cord responsible for wrapping nerve fibers to create insulation known as myelin. Without myelin, the electrical signals sent by neurons travel poorly and some cells die due to the lack of metabolic support from oligodendrocytes. It is the death of oligodendrocytes and the subsequent loss of myelin that leads to neurological disability in diseases such as multiple sclerosis.

During brain development, OPCs spread throughout the central nervous system and make large numbers of oligodendrocytes. Scientists know that few new oligodendrocytes are born in the healthy adult brain, yet the brain is flush with OPCs. However, the function of OPCs in the adult brain wasn’t clear.

To find out, Bergles and his team genetically modified mice so that their OPCs contained a fluorescent protein along their edges, giving crisp definition to their many fine branches that extend in every direction. Using special microscopes that allow imaging deep inside the brain, the team watched the activity of individual cells in living mice for over a month.

The researchers discovered that, far from being static, the OPCs were continuously moving through the brain tissue, extending their “tentacles” and repositioning themselves. Even though these progenitors are dynamic, each cell maintains its own area by repelling other OPCs when they come in contact.

“The cells seem to sense each other’s presence and know how to control the number of cells in their population,” says Bergles. “It looks like this process goes wrong in multiple sclerosis lesions, where there are reduced numbers of OPCs, a loss that may impair the cells’ ability to sense whether demyelination has occurred. We don’t yet know what molecules are involved in this process, but it’s something we’re actively working on.”

To see if OPCs do more than form new oligodendrocytes in the adult brain, the team tested their response to injury by using a laser to create a small wound in the brain. Surprisingly, OPCs migrated to the injury site and contributed to scar formation, a previously unsuspected role. The empty space in the OPC grid, created by the loss of the scar-forming OPCs, was then filled by cell division of neighboring OPCs, providing an explanation for why brain injury is often accompanied by proliferation of these cells.

“Scar cells are not oligodendrocytes, so the term ‘oligodendrocyte precursor cell’ may now be outdated,” says Bergles. “These cells are likely to have a broader role in tissue regeneration and repair than we thought. Because traumatic brain injuries, multiple sclerosis and other neurodegenerative diseases require tissue regeneration, we are eager to learn more about the functions of these enigmatic cells.”

Other authors of the report include Ethan Hughes, Shin Kang and Masahiro Fukaya of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute of Neurological Disorders and Stroke (F32NS076098, NS051509, NS050274) and the Brain Science Institute at The Johns Hopkins University.

Link to article: http://dx.doi.org/10.1038/nn.3390

Video: Interview with Dwight Bergles on the nervous system's progenitor cells: http://www.youtube.com/watch?v=Zhk8mjIaazo

Catherine Kolf | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>