Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a potential cause of autism

29.08.2013
Key enzymes are found to have a 'profound effect' across dozens of genes linked to autism, the insight could help illuminate environmental factors behind autism spectrum disorder and contribute to a unified theory of how the disorder develops

Problems with a key group of enzymes called topoisomerases can have profound effects on the genetic machinery behind brain development and potentially lead to autism spectrum disorder (ASD), according to research announced today in the journal Nature.


Topoisomerase inhibitors reduce the expression of long genes in neurons, including a remarkable number of genes implicated in Autism Spectrum Disorders -- 200 kb is four times longer than the average gene.

Credit: Concept: Mark Zylka. Illustration: Janet Iwasa

Scientists at the University of North Carolina School of Medicine have described a finding that represents a significant advance in the hunt for environmental factors behind autism and lends new insights into the disorder's genetic causes.

"Our study shows the magnitude of what can happen if topoisomerases are impaired," said senior study author Mark Zylka, PhD, associate professor in the Neuroscience Center and the Department of Cell Biology and Physiology at UNC. "Inhibiting these enzymes has the potential to profoundly affect neurodevelopment -- perhaps even more so than having a mutation in any one of the genes that have been linked to autism."

The study could have important implications for ASD detection and prevention.

"This could point to an environmental component to autism," said Zylka. "A temporary exposure to a topoisomerase inhibitor in utero has the potential to have a long-lasting effect on the brain, by affecting critical periods of brain development."

This study could also explain why some people with mutations in topoisomerases develop autism and other neurodevelopmental disorders.

Topiosomerases are enzymes found in all human cells. Their main function is to untangle DNA when it becomes overwound, a common occurrence that can interfere with key biological processes.

Most of the known topoisomerase-inhibiting chemicals are used as chemotherapy drugs. Zylka said his team is searching for other compounds that have similar effects in nerve cells. "If there are additional compounds like this in the environment, then it becomes important to identify them," said Zylka. "That's really motivating us to move quickly to identify other drugs or environmental compounds that have similar effects -- so that pregnant women can avoid being exposed to these compounds."

Zylka and his colleagues stumbled upon the discovery quite by accident while studying topotecan, a topoisomerase-inhibiting drug that is used in chemotherapy. Investigating the drug's effects in mouse and human-derived nerve cells, they noticed that the drug tended to interfere with the proper functioning of genes that were exceptionally long -- composed of many DNA base pairs. The group then made the serendipitous connection that many autism-linked genes are extremely long.

"That's when we had the 'Eureka moment,'" said Zylka. "We realized that a lot of the genes that were suppressed were incredibly long autism genes."

Of the more than 300 genes that are linked to autism, nearly 50 were suppressed by topotecan. Suppressing that many genes across the board -- even to a small extent -- means a person who is exposed to a topoisomerase inhibitor during brain development could experience neurological effects equivalent to those seen in a person who gets ASD because of a single faulty gene.

The study's findings could also help lead to a unified theory of how autism-linked genes work. About 20 percent of such genes are connected to synapses -- the connections between brain cells. Another 20 percent are related to gene transcription -- the process of translating genetic information into biological functions. Zylka said this study bridges those two groups, because it shows that having problems transcribing long synapse genes could impair a person's ability to construct synapses.

"Our discovery has the potential to unite these two classes of genes -- synaptic genes and transcriptional regulators," said Zylka. "It could ultimately explain the biological mechanisms behind a large number of autism cases."

The study's coauthors include Benjamin Philpot (co-senior author), Terry Magnuson, Ian King, Chandri Yandava, Angela Mabb, Hsien-Sung Huang, Brandon Pearson, J. Mauro Calabrese, Joshua Starmer and Joel Parker from UNC and Jack S. Hsiao and Stormy Chamberlain of the University of Connecticut Health Center.

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>