Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Speedy Software Designed to Improve Drug Development

18.11.2011
Creating new, improved pharmaceuticals is sometimes very similar to cracking the code of a combination lock. If you have the wrong numbers, the lock won’t open. Even worse, you don’t know if your numbers are close to the actual code or way off the mark. The only solution is to simply guess a new combination and try again.

Similarly, when a newly created drug doesn’t bind well to its intended target, the drug won’t work. Scientists are then forced to go back to the lab, often with very little indication about why the binding was weak. The next step is to choose a different pharmaceutical “combination” and hope for better results. Georgia Tech researchers have now generated a computer model that could help change that blind process.

Symmetry-adapted perturbation theory (SAPT) allows scientists to study interactions between molecules, such as those between a drug and its target. In the past, computer algorithms that study these noncovalent interactions have been very slow, limiting the types of molecules that can be studied using accurate quantum mechanical methods. A research team headed by Georgia Tech Professor of Chemistry David Sherrill has developed a computer program that can study larger molecules (more than 200 atoms) faster than any other program in existence.

“Our fast energy component analysis program is designed to improve our knowledge about why certain molecules are attracted to one another,“ explained Sherrill, who also has a joint appointment in the School of Computational Science and Engineering. “It can also show us how interactions between molecules can be tuned by chemical modifications, such as replacing a hydrogen atom with a fluorine atom. Such knowledge is key to advancing rational drug design.”

The algorithms can also be used to improve the understanding of crystal structures and energetics, as well as the 3D arrangement of biological macromolecules. Sherrill’s team used the software to study the interactions between DNA and proflavine; these interactions are typical of those found between DNA and several anti-cancer drugs. The findings are published this month in the Journal of Chemical Physics.

Rather than selling the software, the Georgia Tech researchers have decided to distribute their code free of charge as part of the open-source computer program PSI4, developed jointly by researchers at Georgia Tech, Virginia Tech, the University of Georgia and Oak Ridge National Laboratory. It is expected to be available in early 2012.

“By giving away our source code, we hope it will be adopted rapidly by researchers in pharmaceuticals, organic electronics and catalysis, giving them the tools they need to design better products,” said Sherrill.

Sherrill’s team next plans to use the software to study the noncovalent interactions involving indinavir, which is used to treat HIV patients.

This project is supported by the National Science Foundation (NSF) (Award No. CHE-1011360). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

Jason Maderer | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>