Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Tailless Lizards Lose Agility

16.02.2009
When in a predator’s grips, many lizards drop their tails to escape. But what price do they pay for freedom? A team led by biology professor Gary Gillis of Mount Holyoke College found the lizards were compromised: They could no longer jump without tumbling backwards, making it difficult to land safely when jumping between branches.

Among nature's more interesting wonders is the ability of many lizard species to escape their predators. When caught in a vulnerable position, they simply drop their tails, leaving the twitching body part to distract the predator as they scamper to safety.

But, says Gary Gillis, a biology professor at Mount Holyoke College, the lizards lose significant mobility and agility in return for this life-saving natural escape mechanism.

Up to 50 percent of some lizard populations seem to have traded part of their tails in exchange for escape, according to Gillis. While the tails typically grow back in three to six months, Gillis wondered how the loss might impact a branch-hopping, tree-dwelling lizard’s mobility and ability to survive in the interim. Teaming up with undergraduate student Lauren Bonvini, he began recording lizard leaps to observe how well the reptiles coped without their tails. The results are being published February 13 in The Journal of Experimental Biology (http://jeb.biologists.org/).

Constructing a jumping arena from boxes and fine sandpaper, Gillis and Bonvini gently encouraged arboreal Anolis carolinensis (anole) lizards to launch themselves from an 11-centimeter-high platform while filming the animals’ jumps. The lizards performed well, launching themselves by pushing off with their back feet and landing gracefully, covering distances ranging from 14.9 to 29.9 centimeters.

But how well would the animals perform without their tails? After holding the lizards' tails to encourage them to drop them, just as they would with a predator, Bonvini then persuaded the tailless reptiles to jump while Gillis filmed them. As soon as the first animal took to the air, Gillis knew something was different.

"It looked weird," he said. "The animals became blurred as they jumped."

Replaying the animal's jump in slow motion, the team could see that it was tumbling backwards, out of control, as its tail stump flailed. Filming other tailless anoles, four backflipped out of control, although two others seemed to manage their trajectories better.

Teaming up with Duncan Irschick of the University of Massachusetts, Amherst, to analyze the reptiles’ leaps, Gillis could see that everything about the tailless lizards’ take-off was exactly the same as it had been before they lost the appendage – until they left the jump stage. The lizards then began flipping backwards by more than 30 degrees; some tumbled so far that they landed on their backs. The team also realized that when the lizards with whole tails took off, they raised the base of their tails as the rest of the appendage trailed along the ground, as if it was somehow stabilizing the take-off.

"If jumping and landing are important for lizards, they are clearly compromised after losing their tails. Coordinated landing on a branch is out of the question when spinning backwards," said Gillis. Escaping lizards pay a significant ecological cost for their life-saving quick-release system, he concluded.

So how do the lizards use their tails to ensure a safe touchdown? Gillis isn’t sure whether they push down with their tails at take-off to prevent themselves from spinning, or whether the trailing tail passively stabilizes the animal’s departure. He is continuing his research to determine how lizards adjust to life without their tails, with differential degrees of tail loss, and after the tails have grown back.

Related Links:
http://www.mtholyoke.edu/acad/misc/profile/ggillis.shtml
http://jeb.biologists.org
Research video is available.
IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

Full text of the article is available ON REQUEST. To obtain a copy contact Kathryn Knight, The Journal Of Experimental Biology, Cambridge, UK. Tel: +44 (0)1223 425525, or email kathryn@biologists.com

Gary Gillis | Newswise Science News
Further information:
http://www.mtholyoke.edu
http://jeb.biologists.org
http://www.mtholyoke.edu/acad/misc/profile/ggillis.shtml

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>