Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on fly sleep circuit

28.11.2008
Brandeis scientists research fly sleep to advance understanding of human sleep and its disorders

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in humans. The study demonstrates that in flies, as in mammals, the sleep circuit is intimately linked to the circadian clock and that the brain's strategies to govern sleep are evolutionarily ancient.

In the study, researchers quieted ventral lateral neurons (LNvs) and induced sleep in the flies by essentially altering the excitability of these cells with GABA, a major inhibitory neurotransmitter. GABA controls sleep onset and duration by opposing arousal. The same mechanism governs sleep in humans, explained Katherine Parisky, a post-doctoral researcher who coauthored the study led by Brandeis biologist Leslie Griffith's laboratory.

When it is time to wake up, the LNvs are believed to release a neuropeptide known as PDF, rousing the cells, and in turn, the flies. The cycle starts over again when GABA kicks in to quiet these neurons and give the flies a good night's sleep. The study found that mutant flies without PDF or its receptor were hypersomnolent.

The researchers' findings have implications for how sleep-promoting drugs are tested and developed. Currently, drugs that target GABA receptors are among the most widely-used sleep-promoting agents.

"Normally, to treat insomnia in humans, you use global drugs that suppress GABA throughout the brain," explained Griffith. "But it would be ideal to suppress only cells that are part of the sleep circuit."

Sleep problems, from insomnia to narcolepsy, affect millions of people and are extremely costly in both economic and human health terms. The next stage of research will involve researching how PDF controls wakefulness, said Parisky.

"We're taking apart the circuit bit by bit to see how it affects sleep," she said. "We already know that in humans, some people have problems falling asleep, while others can't stay asleep, and there are probably two different mechanisms for these behaviors in flies, as well," Parisky explained.

Fruit flies offer an excellent model organism in which to study sleep because their sleep circuit is relatively simple yet seemingly very similar to the sleep circuit in humans. A greater understanding of how the sleep circuit works in flies could help scientists to design and develop drugs that strategically target different sleep problems.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>