Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on fly sleep circuit

28.11.2008
Brandeis scientists research fly sleep to advance understanding of human sleep and its disorders

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in humans. The study demonstrates that in flies, as in mammals, the sleep circuit is intimately linked to the circadian clock and that the brain's strategies to govern sleep are evolutionarily ancient.

In the study, researchers quieted ventral lateral neurons (LNvs) and induced sleep in the flies by essentially altering the excitability of these cells with GABA, a major inhibitory neurotransmitter. GABA controls sleep onset and duration by opposing arousal. The same mechanism governs sleep in humans, explained Katherine Parisky, a post-doctoral researcher who coauthored the study led by Brandeis biologist Leslie Griffith's laboratory.

When it is time to wake up, the LNvs are believed to release a neuropeptide known as PDF, rousing the cells, and in turn, the flies. The cycle starts over again when GABA kicks in to quiet these neurons and give the flies a good night's sleep. The study found that mutant flies without PDF or its receptor were hypersomnolent.

The researchers' findings have implications for how sleep-promoting drugs are tested and developed. Currently, drugs that target GABA receptors are among the most widely-used sleep-promoting agents.

"Normally, to treat insomnia in humans, you use global drugs that suppress GABA throughout the brain," explained Griffith. "But it would be ideal to suppress only cells that are part of the sleep circuit."

Sleep problems, from insomnia to narcolepsy, affect millions of people and are extremely costly in both economic and human health terms. The next stage of research will involve researching how PDF controls wakefulness, said Parisky.

"We're taking apart the circuit bit by bit to see how it affects sleep," she said. "We already know that in humans, some people have problems falling asleep, while others can't stay asleep, and there are probably two different mechanisms for these behaviors in flies, as well," Parisky explained.

Fruit flies offer an excellent model organism in which to study sleep because their sleep circuit is relatively simple yet seemingly very similar to the sleep circuit in humans. A greater understanding of how the sleep circuit works in flies could help scientists to design and develop drugs that strategically target different sleep problems.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>