Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Confirms Bottom-Feeding Behavior of Humpback Whales

31.10.2013
Humpback whales are known for the complexity of their feeding techniques, which include “trapping” krill and other prey within bubble nets they produce and gulping up to two-thirds their weight in prey-laden water.

Now, scientists have confirmed that humpback whales in the southern Gulf of Maine are spending more feeding time on the ocean floor than in any of these other feeding behaviors. Because entanglement in fishing gear is a major risk to humpbacks, these findings have implications on bottom-set gear like those used in lobster traps.


Caption: Humpback whale with a scrape on its jaw. Scientists say injuries such as this one are sometimes a result from bottom-feeding. Credit: NOAA/Stellwagen Bank National Marine Sanctuary

“Humpbacks have not been known as bottom-feeders, yet this is their dominant feeding mode in this region,” says University of New Hampshire professor of data visualization Colin Ware, lead author of a paper published in the journal Marine Mammal Science. “You’ve got this prominent species, and until now nobody knew how they were doing most of their feeding.”

Ware, of UNH’s Center for Coastal and Ocean Mapping, and his collaborators, including David Wiley of the Stellwagen Bank National Marine Sanctuary of the National Oceanic and Atmospheric Administration (NOAA) and Ari Friedlaender of Duke University Marine Laboratory and Pratt School of Engineering, gathered data from 52 humpback whales in the Stellwagen Bank National Marine Sanctuary and the Great South Channel near Cape Cod, Mass.

By affixing DTAGs – synchronous motion and acoustic recording tags – to the whales’ backs via four suction cups, the researchers could track for the first time the movements of the whales below the ocean’s surface. TrackPlot, a custom software tool developed by Ware, translated the tags’ data into a three-dimensional ribbon that illustrated the whales’ paths as they repeatedly dove to the bottom of the ocean, rolled onto their sides, tilted their heads down, and feasted on sand lance, a favorite food that is abundant there.

From this data, collected between 2004 and 2009, Ware and his collaborators identified three distinct types of behavior during what they call bottom side-roll feeding: simple side-rolls, side-roll inversions, and repetitive scooping. The tag data confirms the bottom-feeding that scientists had suspected from visible scarring along some whales’ jaws.

Not only did the data show that these humpbacks, “by far the most acrobatic of all baleen whales,” Ware says, were performing bottom side-rolls and seafloor scooping, it indicates that this bottom feeding does not include lunging, previously assumed to be the humpbacks’ primary feeding behavior.

In lunge feeding, whales accelerates to propel water full of prey into their enlarged mouths; they then filter the water out through the hair-like filaments of their baleens and retain the prey. Tag data showed that the bottom-feeding humpbacks were moving at too low a speed to characterize this behavior as lunge feeding.

While a Crittercam™ – a National Geographic Society video camera that gives a whale’s-eye view -- attached to a humpback provides additional insight into the whales’ time at the seafloor, Ware cautions that there’s plenty to learn about what the whales are doing in the deep.

“The big mystery is we still don’t know exactly how they’re feeding. We don’t know the mechanism,” he says.

The study, “Bottom side-roll feeding by humpback whales (Megaptera novaeangliae) in the southern Gulf of Maine, U.S.A,” was first published online in Marine Mammal Science in July 2013. In addition to Ware, Wiley and Friedlaender, co-authors are Mason Weinrich of the Whale Centre of New England, Elliott L. Hazen of Duke and NOAA SWFSC, Alessandro Bocconcelli of Woods Hole Oceanographic Institute, Susan E. Parks of Syracuse University, Alison K. Stimpert of the Naval Postgraduate School, Mike A. Thompson of Stellwagen Bank National Marine Sanctuary, and Kyler Abernathy of National Geographic Television.

Funding was provided by the Office of Naval Research (ONR N0014091601 for TrackPlot development and N00014-08-0630 for field work and analysis), NOAA (NA05NOS4001153), the National Oceanographic Partnership Program, the Stellwagen Bank National Marine Sanctuary, and the Office of National Marine Sanctuaries.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students.

Photograph available to download: http://sanctuaries.noaa.gov/news/press/2013/whale_scrape.jpg
Caption: Humpback whale with a scrape on its jaw. Scientists say injuries such as this one are sometimes a result from bottom-feeding.

Credit: NOAA/Stellwagen Bank National Marine Sanctuary

Image available to download: http://sanctuaries.noaa.gov/news/press/2013/trackplot.jpg
Caption: In this 3D computer visualization from UNH’s Data Visualization Research Lab, the roller coaster-like movement of a tagged humpback whale in Stellwagen Bank National Marine Sanctuary is captured over a nearly two-hour period. The whale traveled at depths ranging from 30 to 150 feet deep. The red and blue triangles along the ribbon show the whale's powerful fluke, or tail fin, strokes that propel it through the water. The yellow sections along the ribbons indicate where bottom side-roll feeding occurs.

Credit: Colin Ware, University of New Hampshire Center for Coastal and Ocean Mapping

Watch the Crittercam™ video: http://video.nationalgeographic.com/video/news/animals-news/humpback-whales-bottom-feeding-vin/?source=videomostwatched

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>