Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogramming patients' cells offers powerful new tool for studying, treating blood diseases

31.07.2013
CHOP researchers advance stem cell studies in a childhood leukemia and diamond blackfan anemia

First produced only in the past decade, human induced pluripotent stem cells (iPSCs) are capable of developing into many or even all human cell types. In new research, scientists reprogrammed skin cells from patients with rare blood disorders into iPSCs, highlighting the great promise of these cells in advancing understanding of those challenging diseases—and eventually in treating them.

"The technology for generating these cells has been moving very quickly," said hematologist Mitchell J. Weiss, M.D., Ph.D., corresponding author of two recent studies led by The Children's Hospital of Philadelphia (CHOP). "These investigations can allow us to better understand at a molecular level how blood cells go wrong in individual patients—and to test and generate innovative treatments for the patients' diseases."

Weiss, with Monica Bessler, M.D., Philip Mason, Ph.D., and Deborah L. French, Ph.D., all of CHOP, led a study on iPSCs and Diamond Blackfan anemia (DBA) published online June 6 in Blood. Another study by Weiss, French and colleagues in the same journal on April 25 focused on iPSCs in juvenile myelomonocytic leukemia (JMML).

In DBA, a mutation prevents a patient's bone marrow from producing normal quantities of red blood cells, resulting in severe, sometimes life-threatening anemia. This basic fact makes it difficult for researchers to discern the underlying mechanism of the disease: "It's very difficult to figure out what's wrong, because the bone marrow is nearly empty of these cells," said Bessler, the director of CHOP's Pediatric and Adult Comprehensive Bone Marrow Failure Center.

The study team removed fibroblasts (skin cells) from DBA patients, and in cell cultures, using proteins called transcription factors, reprogrammed the cells into iPSCs. As those iPSCs were stimulated to form blood tissues, like the patient's original mutated cells, they were deficient in producing red blood cells.

However, when the researchers corrected the genetic defect that causes DBA, the iPSCs developed into red blood cells in normal quantities. "This showed that in principle, it's possible to repair a patient's defective cells," said Weiss.

Weiss cautioned that this proof-of-principle finding is an early step, with many further studies to be done to verify if this approach will be safe and effective in clinical use.

However, he added, the patient-derived iPSCs are highly useful as a model cell system for investigating blood disorders. For instance, DBA is often puzzling, because two family members may have the same mutation, but only one may be affected by the disease. Because each set of iPSCs is specific to the individual from whom they are derived, researchers can compare the sets to identify molecular differences, such as a modifier gene active in one person but not the other.

Furthermore, the cells offer a renewable, long-lasting model system for testing drug candidates or gene modifications that may offer new treatments, personalized to individual patients.

The second study in Blood provides a concrete example of using iPSCs for drug testing, specifically for the often-aggressive childhood leukemia, JMML. First the study team generated iPSCs from two children with JMML, and then manipulated the iPSCs in cell cultures to produce myeloid cells that multiplied uncontrollably, much as the original JMML cells do.

They then tested the cells with two drugs, each able to inhibit a separate protein known to be highly active in JMML. One drug, an inhibitor of the MEK kinase, reduced the proliferation of cancerous cells in culture. "This provides a rationale for a potential targeted therapy for this specific subtype of JMML," said Weiss.

A stem cell core facility at CHOP, directed by study co-author Deborah French under the auspices of the hospital's Center for Cellular and Molecular Therapeutics, generated the iPSCs lines used in these studies. The facility's goal is to develop and maintain standardized iPSCs lines specific to a variety of rare inherited diseases—not only DBA and JMML, but also dyskeratosis congenita, congenital dyserythropoietic anemia, thrombocytopenia absent radii (TAR), Glanzmann's thrombasthenia and Hermansky- Pudlak syndrome.

A longer-term goal, added Weiss, is for the iPSC lines to provide the raw materials for eventual cell therapies that could be applied to specific genetic disorders. "The more we learn about the molecular details of how these diseases develop, the closer we get to designing precisely targeted tools to benefit patients."

The National Institutes of Health (grants HL101606, DK090969) supported both studies. Also supporting the Diamond Blackfan anemia study were the U.S. Department of Defense (grant BM090168), and N.I.H. grants CA106995, CA105312, RR024134, and TR000003. Other funders of the JMML study were N.I.H. grants HL099656 and CA082103, the Cookies for Kids' Cancer Foundation, the Leukemia and Lymphoma Society and the Frank A. Campini Foundation. Weiss's research on stem cells is also supported by the Jane Fishman Grinberg Endowed Chair and Bessler receives support from the Buck Family Endowed Chair in Hematology.

"Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients," Blood, published online June 6, 2013. http://doi.org/10.1182/blood-2013-01-478321

"Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia," Blood, published online April 25, 2013. http://doi.org/10.1182/blood-2013-01-478412

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 527-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>