Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Report seeks to integrate microbes into climate models

The models used to understand how Earth's climate works include thousands of different variables from many scientific including atmospherics, oceanography, seismology, geology, physics and chemistry, but few take into consideration the vast effect that microbes have on climate.

Now, a new report from the American Academy of Microbiology, "Incorporating Microbial Processes into Climate Models", offers a plan for integrating the latest understanding of the science of microbiology into climate models.

"Climate scientists and microbiologists usually work in isolation from each other, and yet their work is intimately connected. Microbes are critical players in every geochemical cycle relevant to climate. The sum total of microbial activity is enormous, but the net effect of microbes on climate-relevant gases is currently not known," says Edward DeLong of the Massachusetts Institute of Technology, who co-chaired the report with Caroline Harwood of the University of Washington.

The past two decades have witnessed an explosion in scientific recognition of the diversity of the microbial world. New DNA-sequencing technologies spurred by the Human Genome Project have made it technically and economically possible to sequence the collective DNA from whole microbial communities. This approach, called metagenomics, has revealed a previously undreamed-of degree of diversity in the microbial world. These microbial community analyses many "'omics" approaches, such as proteomics and metabolomics, that together provide a detailed picture of community function, potential and change over time.

The report is based on a colloquium convened by the Academy in 2011. Experts in diverse disciplines in microbiology as well as computational and climate modeling participated in the meeting designed to identify specific efforts and activities that will lead to improved integration of microbial biology, biogeochemistry, and climate modeling.

"While the gap between these disciplines is daunting, the need to bridge it is urgent and the science and technology needed to begin to do so is within reach," says Harwood.

The report suggests a multipronged approach, breaking the challenge into manageable parts. The first recommendation is to choose a few specific biogeochemical cycles that are important, microbially driven and tractable to serve as demonstration projects. Specifically, the report identifies methane, carbon storage and nitrous oxide.

Other recommendations include:

Assess current data collection methodologies and develop a monitoring/data collection strategy

Implement validation processes to integrate data collection, modeling and experimentation

Facilitate and provide incentives for collaborations and interdisciplinary training

Address technology needs

"There is clear evidence that microbes can have an enormous impact on climate. In light of the increasingly urgent need to understand and find ways to mitigate climate change, the centrality of microbes in global biogeochemical cycles, can no longer be ignored," says DeLong.

A full copy of the report and more detailed recommendations can be found on the Academy website at

The American Academy of Microbiology is the honorific leadership group of the American Society for Microbiology. The mission of the Academy is to recognize scientific excellence, as well as foster knowledge and understanding in the microbiological sciences. A full list of Academy colloquia reports can be found at

Jim Sliwa | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>