Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thiocoraline-A Binds The DNA Of Tumor Cells

05.12.2007
Scientists from the Universidad de Alcalá (UAH) explain the molecular bases of DNA sequence identification by the marine antitumoral antibiotic thiocoraline A.

Researchers from the Universidad de Alcalá (UAH) managed by Professor Federico Gago from the pharmacology department, have published an article in the Journal of Medicinal Chemistry clarifying the molecular bases of DNA sequence identification by Thiocoraline A, a marine antibiotic compound with antitumoral action.

This molecule is a product of the biopharmaceutical company PharmaMar (http://www.pharmamar.com/es/pipeline/) and has a potent cytotoxic effect over a wide range of tumour cells both animal and human. The 3D structure of thiocoraline, determined by X-ray crystallography at the Universidad de Santiago de Compostela, shows a characteristic staple shaped pattern that explains its bisintercalative property in the DNA double helix (fig) as well as the particular arrangement of the pairs, piling up in columns inside the crystal structure.

Thanks to this double intercalation, thiocoraline is able to identify specific sequences of DNA and attaches to them, making it harder for the strands of DNA that form the double helix to separate.

... more about:
»DNA »Marine »UAH »antibiotic »sequence »thiocoraline

In order to evaluate this effect, Professor Alberto Domingo from the biochemistry and molecular biology department of the UAH used tiny quantities of DNA linked to a fluorescent marker and standard instruments for reverse transcription polymerase chain reaction (RT-PCR). The information produced by this miniaturised method, that has proven to be a far superior technique to the those used in the past for this kind of experimentation, shows the binding affinity of thiocoraline for DNA in great detail, and has later been computer modelled for better understanding. In this way, it has been possible to verify that the flat rings of this molecule intertwine with the two closest base pairs while leaving another two pairs in between free in accordance with the exclusion principle; the rest of the molecule establishes hydrogen bonds with the central base pairs.

The resulting complex resembles a sandwich in which the bread is represented by the rings of the agent and the filling is the base pairs trapped by the thiocoraline (fig). It’s mainly these hydrogen bonds that grant the antibiotic the ability to bind selectively and this area is currently still under investigation at PharmaMar, a company of the Zeltia group that was recently granted approval by the Spanish health authorities for a new product of marine origin - the trabectedin (Yondelis) - aimed to treat sarcoma in soft tissues.

Authors: Federico Gago y Ana Negri

Oficina de Información Científic | alfa
Further information:
http://www.uah.es
http://pubs3.acs.org/acs/journals/toc.page?incoden=jmcmar&indecade=0&involume=50&inissue=14

Further reports about: DNA Marine UAH antibiotic sequence thiocoraline

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>