Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-resistant mouse discovered

29.11.2007
A mouse resistant to cancer, even highly-aggressive types, has been created by researchers at the University of Kentucky. The breakthrough stems from a discovery by UK College of Medicine professor of radiation medicine Vivek Rangnekar and a team of researchers who found a tumor-suppressor gene called "Par-4" in the prostate.

The researchers discovered that the Par-4 gene kills cancer cells, but not normal cells. There are very few molecules that specifically fight against cancer cells, giving it a potentially therapeutic application.

Funded by several grants from the National Institutes of Health, Rangnekar's study is unique in that mice born with this gene are not developing tumors. The mice grow normally and have no defects. In fact, the mice possessing Par-4 actually live a few months longer than the control animals, indicating that they have no toxic side effects.

"We originally discovered Par-4 in the prostate, but it's not limited to the prostate. The gene is expressed in every cell type that we've looked at and it induces the death of a broad range of cancer cells, including of course, cancer cells in the prostate," said Rangnekar. "The interesting part of this study is that this killer gene is selective for killing cancer cells. It will not kill normal cells and there are very, very few selective molecules out there like this."

... more about:
»Mouse »Par-4 »Rangnekar »effects »prostate

To further investigate the potential therapeutic benefits of this gene, Rangnekar's team introduced it into the egg of a mouse. That egg was then planted into a surrogate mother.

"The mouse itself does not express a large number of copies of this gene, but the pups do and then their pups start expressing the gene," Rangnekar said. "So, we've been able to transfer this activity to generations in the mouse."

The implications for humans could be that through bone marrow transplantation, the Par-4 molecule could potentially be used to fight cancer cells in patients without the toxic and damaging side effects of chemotherapy and radiation therapy.

"When a cancer patient goes to the clinic, they undergo chemotherapy or radiation and there are potential side effects associated with these treatments," Rangnekar said. "We got interested in looking for a molecule which will kill cancer cells and not kill normal cells, but also would not be toxic with regard to the production of side effects to the entire organism. We are thinking of this in a holistic approach that not only would get rid of the tumor, but also not harm the organism as a whole. Before this animal study, we published a lot of work indicating that in cell culture, there's no killing of normal cells. This is the proof that it doesn’t kill normal cells because the mouse is alive and healthy."

Rangnekar admits there is much more work to be done before this research can be applied to humans, but agrees that is the most logical next step.

"I look at this research from the standpoint of how it can be developed to the benefit of the cancer patient and that's really what keeps us focused all this time," said Rangnekar. "If you look at the pain that cancer patients go through, not just from the disease, but also from the treatment – it's excruciating. If you have someone in your family, like I did, who has gone through that, you know you can see that pain. If you can not only treat the cancer, but also not harm the patient, that's a major breakthrough. That's happening with these animals and I think that's wonderful."

Amy Ratliff | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/OPBPA/Top20.html

Further reports about: Mouse Par-4 Rangnekar effects prostate

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>