Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-resistant mouse discovered

29.11.2007
A mouse resistant to cancer, even highly-aggressive types, has been created by researchers at the University of Kentucky. The breakthrough stems from a discovery by UK College of Medicine professor of radiation medicine Vivek Rangnekar and a team of researchers who found a tumor-suppressor gene called "Par-4" in the prostate.

The researchers discovered that the Par-4 gene kills cancer cells, but not normal cells. There are very few molecules that specifically fight against cancer cells, giving it a potentially therapeutic application.

Funded by several grants from the National Institutes of Health, Rangnekar's study is unique in that mice born with this gene are not developing tumors. The mice grow normally and have no defects. In fact, the mice possessing Par-4 actually live a few months longer than the control animals, indicating that they have no toxic side effects.

"We originally discovered Par-4 in the prostate, but it's not limited to the prostate. The gene is expressed in every cell type that we've looked at and it induces the death of a broad range of cancer cells, including of course, cancer cells in the prostate," said Rangnekar. "The interesting part of this study is that this killer gene is selective for killing cancer cells. It will not kill normal cells and there are very, very few selective molecules out there like this."

... more about:
»Mouse »Par-4 »Rangnekar »effects »prostate

To further investigate the potential therapeutic benefits of this gene, Rangnekar's team introduced it into the egg of a mouse. That egg was then planted into a surrogate mother.

"The mouse itself does not express a large number of copies of this gene, but the pups do and then their pups start expressing the gene," Rangnekar said. "So, we've been able to transfer this activity to generations in the mouse."

The implications for humans could be that through bone marrow transplantation, the Par-4 molecule could potentially be used to fight cancer cells in patients without the toxic and damaging side effects of chemotherapy and radiation therapy.

"When a cancer patient goes to the clinic, they undergo chemotherapy or radiation and there are potential side effects associated with these treatments," Rangnekar said. "We got interested in looking for a molecule which will kill cancer cells and not kill normal cells, but also would not be toxic with regard to the production of side effects to the entire organism. We are thinking of this in a holistic approach that not only would get rid of the tumor, but also not harm the organism as a whole. Before this animal study, we published a lot of work indicating that in cell culture, there's no killing of normal cells. This is the proof that it doesn’t kill normal cells because the mouse is alive and healthy."

Rangnekar admits there is much more work to be done before this research can be applied to humans, but agrees that is the most logical next step.

"I look at this research from the standpoint of how it can be developed to the benefit of the cancer patient and that's really what keeps us focused all this time," said Rangnekar. "If you look at the pain that cancer patients go through, not just from the disease, but also from the treatment – it's excruciating. If you have someone in your family, like I did, who has gone through that, you know you can see that pain. If you can not only treat the cancer, but also not harm the patient, that's a major breakthrough. That's happening with these animals and I think that's wonderful."

Amy Ratliff | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/OPBPA/Top20.html

Further reports about: Mouse Par-4 Rangnekar effects prostate

More articles from Life Sciences:

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Matabele ants: Travelling faster with detours
21.05.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>