Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-resistant mouse discovered

29.11.2007
A mouse resistant to cancer, even highly-aggressive types, has been created by researchers at the University of Kentucky. The breakthrough stems from a discovery by UK College of Medicine professor of radiation medicine Vivek Rangnekar and a team of researchers who found a tumor-suppressor gene called "Par-4" in the prostate.

The researchers discovered that the Par-4 gene kills cancer cells, but not normal cells. There are very few molecules that specifically fight against cancer cells, giving it a potentially therapeutic application.

Funded by several grants from the National Institutes of Health, Rangnekar's study is unique in that mice born with this gene are not developing tumors. The mice grow normally and have no defects. In fact, the mice possessing Par-4 actually live a few months longer than the control animals, indicating that they have no toxic side effects.

"We originally discovered Par-4 in the prostate, but it's not limited to the prostate. The gene is expressed in every cell type that we've looked at and it induces the death of a broad range of cancer cells, including of course, cancer cells in the prostate," said Rangnekar. "The interesting part of this study is that this killer gene is selective for killing cancer cells. It will not kill normal cells and there are very, very few selective molecules out there like this."

... more about:
»Mouse »Par-4 »Rangnekar »effects »prostate

To further investigate the potential therapeutic benefits of this gene, Rangnekar's team introduced it into the egg of a mouse. That egg was then planted into a surrogate mother.

"The mouse itself does not express a large number of copies of this gene, but the pups do and then their pups start expressing the gene," Rangnekar said. "So, we've been able to transfer this activity to generations in the mouse."

The implications for humans could be that through bone marrow transplantation, the Par-4 molecule could potentially be used to fight cancer cells in patients without the toxic and damaging side effects of chemotherapy and radiation therapy.

"When a cancer patient goes to the clinic, they undergo chemotherapy or radiation and there are potential side effects associated with these treatments," Rangnekar said. "We got interested in looking for a molecule which will kill cancer cells and not kill normal cells, but also would not be toxic with regard to the production of side effects to the entire organism. We are thinking of this in a holistic approach that not only would get rid of the tumor, but also not harm the organism as a whole. Before this animal study, we published a lot of work indicating that in cell culture, there's no killing of normal cells. This is the proof that it doesn’t kill normal cells because the mouse is alive and healthy."

Rangnekar admits there is much more work to be done before this research can be applied to humans, but agrees that is the most logical next step.

"I look at this research from the standpoint of how it can be developed to the benefit of the cancer patient and that's really what keeps us focused all this time," said Rangnekar. "If you look at the pain that cancer patients go through, not just from the disease, but also from the treatment – it's excruciating. If you have someone in your family, like I did, who has gone through that, you know you can see that pain. If you can not only treat the cancer, but also not harm the patient, that's a major breakthrough. That's happening with these animals and I think that's wonderful."

Amy Ratliff | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/OPBPA/Top20.html

Further reports about: Mouse Par-4 Rangnekar effects prostate

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>