Cutting edge – Scientists have combined a cutting ribosyme activity with an unwinding helicase activity

Scientists have long toyed with the idea of putting to work a special class of biological catalysts, called ribozymes, as therapeutic agents. These molecular scissors would harness the activities of overly active genes that contribute to diseases like cancer by cutting their immediate products, messenger RNAs, into unusable pieces. The advantage of this approach, is that these molecules can be made to recognize very specific targets. This is reported in this month issue of EMBO reports.

Up until now, however, technical difficulties have hampered the development of such tools; the targets for these molecules are often folded extensively, making particular cleavage sites inaccessible to the catalyst. However, in the May 15 issue of EMBO reports, H. Kawasaki and K. Taira report on a technical breakthrough. By linking ribozymes to helicases, cellular components whose normal function is to ‘smooth out’ folded RNA’s to allow them to be ‘translated’ into proteins, these investigators have managed to circumvent this ‘folding’ difficulty. They have been able to efficiently inhibit the activities of a number of target RNA’s, even at sites that are known to be inaccessible to regular ribozymes. This has further allowed them to develop a method for investigating the functions of random RNA’s, creating a tool that may be invaluable in characterizing the functions of many of the previously unknown genes that have only recently been uncovered by various genome projects. Although we are not yet ready to treat any diseases using ribozymes, this study may indeed be a big step in the right direction.

Media Contact

Ellen Peerenboom alphagalileo

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors