Modeling Pathogen Responses

The key to creating a vaccination lies in knowing which parts of the pathogen to target with which antibodies. A new study by David Heckerman and colleagues from Massachusetts General Hospital, publishing on October 12, 2007, in PLoS Computational Biology, has come up with a way to match pathogens to their antibodies.

At the core of the human immune response is the train-to-kill mechanism in which specialized immune cells are sensitized to recognize small peptides from foreign pathogens (e.g., HIV). Following this sensitization, these cells are then activated to kill cells that display this same peptide.

However, for sensitization and killing to occur, the pathogen peptide must be “paired up” with one of the infected person’s other specialized immune molecules—an HLA (human leukocyte antigen) molecule. The way in which pathogen peptides interact with these HLA molecules defines if and how an immune response will be generated.

Heckerman’s model uses ELISpot assays to identify HLA-restricted epitopes, and which HLA alleles are responsible for which reactions towards which pathogens. The data generated about the immune response to pathogens fills in missing information from previous studies, and can be used to solve a variety of similar problems. The model was applied to data from donors with HIV, and made 12 correct predictions out of 16.

This study, says David Heckerman, has “significant implications for the understanding of…vaccine development”. The statistical approach is unusual in the study of HLA molecules, and could lead the way to developing an HIV vaccine.

Media Contact

Andrew Hyde alfa

More Information:

http://www.ploscompbiol.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors