Modeling Pathogen Responses

The key to creating a vaccination lies in knowing which parts of the pathogen to target with which antibodies. A new study by David Heckerman and colleagues from Massachusetts General Hospital, publishing on October 12, 2007, in PLoS Computational Biology, has come up with a way to match pathogens to their antibodies.

At the core of the human immune response is the train-to-kill mechanism in which specialized immune cells are sensitized to recognize small peptides from foreign pathogens (e.g., HIV). Following this sensitization, these cells are then activated to kill cells that display this same peptide.

However, for sensitization and killing to occur, the pathogen peptide must be “paired up” with one of the infected person’s other specialized immune molecules—an HLA (human leukocyte antigen) molecule. The way in which pathogen peptides interact with these HLA molecules defines if and how an immune response will be generated.

Heckerman’s model uses ELISpot assays to identify HLA-restricted epitopes, and which HLA alleles are responsible for which reactions towards which pathogens. The data generated about the immune response to pathogens fills in missing information from previous studies, and can be used to solve a variety of similar problems. The model was applied to data from donors with HIV, and made 12 correct predictions out of 16.

This study, says David Heckerman, has “significant implications for the understanding of…vaccine development”. The statistical approach is unusual in the study of HLA molecules, and could lead the way to developing an HIV vaccine.

Media Contact

Andrew Hyde alfa

More Information:

http://www.ploscompbiol.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors