Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover novel mechanism that balances the sizes of functional areas in the brain

11.09.2007
Researchers uncover novel mechanism that balances the sizes of functional areas in the brain

In the cerebral cortex, the brain’s powerful central processing unit responsible for higher functions, specialized subdivisions known as areas are laid out like a map, but little is known about the genetic forces that shape the geography of our brains.

In this week’s advance online edition of Nature Neuroscience, an international collaboration between researchers at the Salk Institute for Biological Studies and the Telethon Institute of Genetics and Medicine in Italy reports the discovery of a novel function for a factor that negotiates the borders between areas and balances their sizes and positions relative to each other.

The factor, COUP-TF1, ensures that the frontal areas don’t claim too much cortical real estate. Without COUP-TF1 keeping the frontal areas in check, they undergo massive expansion squeezing and pushing neighboring sensory areas literally to the back of the brain.

The findings show how the cortex is properly parceled into “frontal” areas that control higher functions related to emotions and the movements of our bodies versus areas that interpret our sensory environment and allow us to see, hear and feel. Because primary areas in humans differ by two-fold or more in the normal population, these findings may explain these size differences, which appear to account, at least in part, for differences between individuals in behavior and skills.

“Until now, there has been only one other gene, Emx2, that everybody agrees on directly controls area patterning,” explains co-senior author Dennis O’Leary, Ph.D., professor in the Molecular Neurobiology Laboratory at the Salk Institute. “Our current understanding of this process is the proverbial tip of the iceberg. We are only beginning to define the mechanisms that determine the area identity of neurons in the cortex.”

The back of the cortex is predominantly specialized to process vision, whereas the front of the cortex handles motor functions and controls voluntary movement, as well as having a central role in higher cognitive functions. The area right above the ear trades in sounds and speech, while the somatosensory area located in the middle top of the head interprets information about touch and pain.

In previous studies, the O’Leary lab discovered that Emx2, a gene common to mice and men as is COUP-TF1, instructs progenitor cells to develop into visual neurons. “Emx2 is the gold standard for genes that impart area identity to cortical neurons,” says O’Leary. “When we increased the amount of Emx2, the visual area expanded at the expense of the frontal and somatosensory areas and vice versa.”

Just like the Emx2 gene, COUP-TF1 is normally most active in the back of the cortex, with its activity gradually tapering off toward the front. Both genes code for transcription factors — which operate by controlling a cascade of other genes — hinting at a possible role for COUP-TF1 in area patterning as well.

Completely eliminating the gene in lab mice through genetic engineering – a mainstay of scientists trying to figure out the function of a particular gene – did not clarify the roles of COUP-TF1. “Mice without COUP-TF1 have many defects and die a few days after birth before functional areas can be defined,” explains co-first author Shen-Ju Chou, a postdoctoral researcher in the O’Leary lab.

So O’Leary and his team collaborated with Italian researchers, led by Dr. Michele Studer, who is co-senior author with O’Leary of the study, to develop mice in which COUP-TF1 can be selectively removed from progenitor cells in the cortex just before they start generating cortical neurons. The mice survive to be adults and appear quite normal. Their cortical landscape, however, is a different matter.

“We were surprised by what we saw,” Chou says. “The frontal areas took over most of the cortex, while the sensory areas were drastically reduced in size and relegated to a small domain at the back of the brain.” The overall size of the cortex stayed the same.

“Our findings imply that Emx2 and COUP-TF1 work in opposing ways,” says O’Leary. “While Emx2 works in a positive manner to specify the area identity of visual neurons, the presence of COUP-TF1 prevents progenitor cells from taking on a motor area identity.”

Although the mice lacking COUP-TF1 in their cortex do not have any obvious sensory or motor problems, the researchers believe that a closer look will reveal substantial deficits. Their prediction is based on a study published by O’Leary and his colleagues earlier this year. They found that individual areas must be the right size relative to each other or mice will underperform in tests of their skills at the relevant behaviors.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Coup-Tf1 Emx2 O’Leary balances cortical frontal mechanism neurons novel

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>