Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using evolution, UW team creates a template for many new therapeutic agents

11.09.2007
By guiding an enzyme down a new evolutionary pathway, a team of University of Wisconsin-Madison researchers has created a new form of an enzyme capable of producing a range of potential new therapeutic agents with anticancer and antibiotic properties.

Writing in the current issue (Sept. 9, 2007) of the journal Nature Chemical Biology, a team of researchers from the UW-Madison School of Pharmacy describes a novel enzyme capable of changing the chemical properties of a variety of existing drugs and small molecules to make new agents to treat cancer and fight infection.

"We're finding this enzyme glycosylates all sorts of molecules," says Jon Thorson, a UW-Madison professor of pharmaceutical sciences describing the process of adding natural sugar molecules to other chemical molecules to enhance their biological effects.

The newly evolved enzyme developed by Thorson and colleagues Gavin. J. Williams and Changsheng Zhang, according to Thorson, is akin to a "Swiss Army enzyme," a catalyst that can decorate many different chemical molecules with all sorts of sugars to alter their biological effects.

... more about:
»Agents »CReATE »Thorson »antibiotic »enzyme »sugar »therapeutic

Enzymes are proteins that act as catalysts across biology, from single-celled organisms to humans. They promote chemical reactions in cells and are used widely in industry for everything from making beer and cheese to producing paper and biofuel.

They are also important for making so-called natural drugs, therapeutic agents based on the blueprints of chemicals produced in nature by plants and microorganisms. Such natural sugar-bearing chemicals are the basis for some of medicine's most potent antibiotics and anticancer drugs as exemplified by the antibiotic erythromycin and the anticancer drug doxorubicin.

Important chemical features of such drugs are natural sugars, molecules that often determine a chemical compound's biological effects. Although scientists can sometimes manipulate how sugars are added or subtracted to a chemical molecule to alter its therapeutic properties, it is difficult and not always possible to routinely modify them to enhance their beneficial effects.

The new enzyme was created by generating random mutations in genes that make a naturally occurring enzyme. The altered genes were then put into a bacterium, which fabricated a series of randomly mutated new enzymes. These enzyme variants were then tested in a high throughput screen where chemical molecules engineered to fluoresce stop glowing when a sugar is successfully attached.

"We're transferring the sugar to a beacon," Thorson explains. "When you attach a sugar, you shut off the fluorescence."

The development of the screen, according to Thorson, was critical, overcoming a key limitation in the glycosyltransferase field.

"We're assaying hundreds of very interesting drug-like molecules now with newly evolved glycosyltransferases. The ability to rapidly evolve these enzymes has opened a lot of doors."

The range of potential therapeutic agents that might be generated with the new technology includes important anti-inflammatory and anti-cancer compounds, and antibiotics.

What's more, the work could lead to the creation of a "super bug," an engineered bacterium that can perform the entire process in a laboratory dish: "There's no doubt that this is going to work in vivo," says Thorson. "We can create a bug where you feed it sugars and the compounds you want to hang those sugars on" to arrive at new medicines.

Jon Thorson | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Agents CReATE Thorson antibiotic enzyme sugar therapeutic

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>