Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using evolution, UW team creates a template for many new therapeutic agents

11.09.2007
By guiding an enzyme down a new evolutionary pathway, a team of University of Wisconsin-Madison researchers has created a new form of an enzyme capable of producing a range of potential new therapeutic agents with anticancer and antibiotic properties.

Writing in the current issue (Sept. 9, 2007) of the journal Nature Chemical Biology, a team of researchers from the UW-Madison School of Pharmacy describes a novel enzyme capable of changing the chemical properties of a variety of existing drugs and small molecules to make new agents to treat cancer and fight infection.

"We're finding this enzyme glycosylates all sorts of molecules," says Jon Thorson, a UW-Madison professor of pharmaceutical sciences describing the process of adding natural sugar molecules to other chemical molecules to enhance their biological effects.

The newly evolved enzyme developed by Thorson and colleagues Gavin. J. Williams and Changsheng Zhang, according to Thorson, is akin to a "Swiss Army enzyme," a catalyst that can decorate many different chemical molecules with all sorts of sugars to alter their biological effects.

... more about:
»Agents »CReATE »Thorson »antibiotic »enzyme »sugar »therapeutic

Enzymes are proteins that act as catalysts across biology, from single-celled organisms to humans. They promote chemical reactions in cells and are used widely in industry for everything from making beer and cheese to producing paper and biofuel.

They are also important for making so-called natural drugs, therapeutic agents based on the blueprints of chemicals produced in nature by plants and microorganisms. Such natural sugar-bearing chemicals are the basis for some of medicine's most potent antibiotics and anticancer drugs as exemplified by the antibiotic erythromycin and the anticancer drug doxorubicin.

Important chemical features of such drugs are natural sugars, molecules that often determine a chemical compound's biological effects. Although scientists can sometimes manipulate how sugars are added or subtracted to a chemical molecule to alter its therapeutic properties, it is difficult and not always possible to routinely modify them to enhance their beneficial effects.

The new enzyme was created by generating random mutations in genes that make a naturally occurring enzyme. The altered genes were then put into a bacterium, which fabricated a series of randomly mutated new enzymes. These enzyme variants were then tested in a high throughput screen where chemical molecules engineered to fluoresce stop glowing when a sugar is successfully attached.

"We're transferring the sugar to a beacon," Thorson explains. "When you attach a sugar, you shut off the fluorescence."

The development of the screen, according to Thorson, was critical, overcoming a key limitation in the glycosyltransferase field.

"We're assaying hundreds of very interesting drug-like molecules now with newly evolved glycosyltransferases. The ability to rapidly evolve these enzymes has opened a lot of doors."

The range of potential therapeutic agents that might be generated with the new technology includes important anti-inflammatory and anti-cancer compounds, and antibiotics.

What's more, the work could lead to the creation of a "super bug," an engineered bacterium that can perform the entire process in a laboratory dish: "There's no doubt that this is going to work in vivo," says Thorson. "We can create a bug where you feed it sugars and the compounds you want to hang those sugars on" to arrive at new medicines.

Jon Thorson | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Agents CReATE Thorson antibiotic enzyme sugar therapeutic

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>