Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover pathway to cell size, division

01.08.2007
Cut and run

Organisms precisely regulate cell size to ensure that daughter cells have sufficient cellular material to thrive or to create specific cell types: a tiny sperm versus a gargantuan egg for example. In single-celled organisms such as yeast and bacteria, nutrient availability is the primary determinant of cell size. In animal cells, size is controlled in large part by a molecule that senses the blood sugar-dependent hormone insulin.

Petra Levin, Ph.D., Assistant Professor of Biology at Washington University in St. Louis, and her laboratory have recently identified a trio of enzymes that act in concert to link nutrient availability to cell size in the soil bacterium Bacillus subtilis.

Levin and her lab are looking into the factors that control the timing and position of cell division in B. subtilis. B. subtilis serves as the model system for a large family of bacteria that includes the causative agents of several important diseases, including anthrax and botulism. By learning how these simple organisms regulate division, she hopes to better understand why this process goes awry in cancer cells resulting in uncontrolled growth and aberrant division.

... more about:
»FtsZ »divide »pathway »subtilis

A primary focus of the Levin lab's research is a protein called FtsZ. FtsZ is an ancestor of tubulin, the protein that is responsible for distributing duplicated chromosomes between dividing human cells. In bacteria, FtsZ forms a ring at the future division site. The FtsZ ring then recruits all other components necessary for cell division and serves as the scaffolding for the entire division process.

The factors that regulate FtsZ ring formation determine when and where the cell is going to divide. "Theoretically a cell could divide anywhere and at anytime," said Brad Weart, a graduate student in Levin's lab. "The cell has to very precisely restrain that process so that it only happens when and where the cell wants it to happen."

In their most recent paper, published in the July 27, 2007 issue of Cell, Weart et al. identified a metabolic sensor that links cell division and cell size in B. subtilis with nutritional availability. This sensor is comprised of a three enzyme pathway that was previously shown to be involved in synthesizing a modified component of the cell membrane. The Levin lab's data indicates the pathway also has a major role in cell division. "So far this has been the only pathway that's been identified in bacteria that directly regulates cell size," says Levin.

Typically, cells in nutrient-rich environments grow bigger than cells in nutrient-poor environments. The Levin lab determined that mutations in genes encoding the three enzymes resulted in cells that were small even when they were in a nutrient-rich environment. "Basically, the cells had no way to tell the division apparatus to wait until they've reached the size they should be. The cells would divide when they were still very short," said Levin. "It was almost as if they were growing in really great media but they didn't know it."

Knowing when to divide

Further work indicated that the mutation perturbed FtsZ ring formation. In the cell, FtsZ exists in a balance between its unassembled and assembled state. The enzyme trio regulated FtsZ ring formation by changing this balance — pushing FtsZ towards its unassembled state when the cells were growing in nutrient-rich conditions, thereby delaying cell division and increasing cell size.

All three enzymes in the pathway are sensitive to glucose levels, and the pathway is therefore well suited to communicating nutritional information directly to the cell's division apparatus. In nutrient-poor conditions the enzymes no longer inhibit FtsZ assembly, allowing the FtsZ ring to form when the cells are still small, resulting in the formation of smaller daughter cells. The third enzyme in the pathway, UgtP, physically interacts with FtsZ to prevent ring formation. UgtP responds to low levels of glucose (nutrient-poor conditions) by becoming unstable and forming what appear to be inactive aggregates.

Disrupting this pathway leads to defects in chromosome segregation. A cell that is too small is unable to effectively move its DNA away from the division site and the resultant daughter cells frequently do not contain all the genetic material that they should. By coordinating cell size with growth rate, cells are able to maintain proper distribution of DNA.

This work is also something of a cautionary tale about the limitations of genome sequencing. "More and more often we are finding that metabolic enzymes have more than one function," said Levin, "There is no hint from their sequence that they have other activities so you really need to delve deeper and apply different methods to identify them."

Levin notes that her research is uncovering just the "tip of the iceberg" in the field of cell size control, but identifying genes such as ugtP helps Levin and other researchers get a better handle on precisely what determine how big a cell will be.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: FtsZ divide pathway subtilis

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>