Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover pathway to cell size, division

01.08.2007
Cut and run

Organisms precisely regulate cell size to ensure that daughter cells have sufficient cellular material to thrive or to create specific cell types: a tiny sperm versus a gargantuan egg for example. In single-celled organisms such as yeast and bacteria, nutrient availability is the primary determinant of cell size. In animal cells, size is controlled in large part by a molecule that senses the blood sugar-dependent hormone insulin.

Petra Levin, Ph.D., Assistant Professor of Biology at Washington University in St. Louis, and her laboratory have recently identified a trio of enzymes that act in concert to link nutrient availability to cell size in the soil bacterium Bacillus subtilis.

Levin and her lab are looking into the factors that control the timing and position of cell division in B. subtilis. B. subtilis serves as the model system for a large family of bacteria that includes the causative agents of several important diseases, including anthrax and botulism. By learning how these simple organisms regulate division, she hopes to better understand why this process goes awry in cancer cells resulting in uncontrolled growth and aberrant division.

... more about:
»FtsZ »divide »pathway »subtilis

A primary focus of the Levin lab's research is a protein called FtsZ. FtsZ is an ancestor of tubulin, the protein that is responsible for distributing duplicated chromosomes between dividing human cells. In bacteria, FtsZ forms a ring at the future division site. The FtsZ ring then recruits all other components necessary for cell division and serves as the scaffolding for the entire division process.

The factors that regulate FtsZ ring formation determine when and where the cell is going to divide. "Theoretically a cell could divide anywhere and at anytime," said Brad Weart, a graduate student in Levin's lab. "The cell has to very precisely restrain that process so that it only happens when and where the cell wants it to happen."

In their most recent paper, published in the July 27, 2007 issue of Cell, Weart et al. identified a metabolic sensor that links cell division and cell size in B. subtilis with nutritional availability. This sensor is comprised of a three enzyme pathway that was previously shown to be involved in synthesizing a modified component of the cell membrane. The Levin lab's data indicates the pathway also has a major role in cell division. "So far this has been the only pathway that's been identified in bacteria that directly regulates cell size," says Levin.

Typically, cells in nutrient-rich environments grow bigger than cells in nutrient-poor environments. The Levin lab determined that mutations in genes encoding the three enzymes resulted in cells that were small even when they were in a nutrient-rich environment. "Basically, the cells had no way to tell the division apparatus to wait until they've reached the size they should be. The cells would divide when they were still very short," said Levin. "It was almost as if they were growing in really great media but they didn't know it."

Knowing when to divide

Further work indicated that the mutation perturbed FtsZ ring formation. In the cell, FtsZ exists in a balance between its unassembled and assembled state. The enzyme trio regulated FtsZ ring formation by changing this balance — pushing FtsZ towards its unassembled state when the cells were growing in nutrient-rich conditions, thereby delaying cell division and increasing cell size.

All three enzymes in the pathway are sensitive to glucose levels, and the pathway is therefore well suited to communicating nutritional information directly to the cell's division apparatus. In nutrient-poor conditions the enzymes no longer inhibit FtsZ assembly, allowing the FtsZ ring to form when the cells are still small, resulting in the formation of smaller daughter cells. The third enzyme in the pathway, UgtP, physically interacts with FtsZ to prevent ring formation. UgtP responds to low levels of glucose (nutrient-poor conditions) by becoming unstable and forming what appear to be inactive aggregates.

Disrupting this pathway leads to defects in chromosome segregation. A cell that is too small is unable to effectively move its DNA away from the division site and the resultant daughter cells frequently do not contain all the genetic material that they should. By coordinating cell size with growth rate, cells are able to maintain proper distribution of DNA.

This work is also something of a cautionary tale about the limitations of genome sequencing. "More and more often we are finding that metabolic enzymes have more than one function," said Levin, "There is no hint from their sequence that they have other activities so you really need to delve deeper and apply different methods to identify them."

Levin notes that her research is uncovering just the "tip of the iceberg" in the field of cell size control, but identifying genes such as ugtP helps Levin and other researchers get a better handle on precisely what determine how big a cell will be.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: FtsZ divide pathway subtilis

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>