Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use new approach to predict protein function

12.07.2007
In a paper published online this month in the journal Nature Chemical Biology, researchers report that they have developed a way to determine the function of some of the hundreds of thousands of proteins for which amino acid sequence data are available, but whose structure and function remain unknown.
The research team, led by University of Illinois biochemistry professor John A. Gerlt, is the first to use a computational approach to accurately predict a protein's function from its amino acid sequence. Their "in silico" (computer-aided) predictions were validated in the laboratory by means of enzyme assays and X-ray crystallography.

The new approach involved searching databases of known proteins for those with amino acid sequences that had the greatest homology to the unknown proteins. The researchers then used the three-dimensional structures of the most closely matched known proteins in their analyses of protein function.

Using the structural data obtained from this homology modeling, the team performed computerized docking experiments to quickly evaluate whether the unknown proteins were likely to bind to any of a vast library of potential target molecules, or substrates. Determining which substrate binds to a given protein is vital to understanding the protein's function.

"This study describes an integrated approach using experimental techniques, computational techniques and X-ray crystallography for predicting the function of a protein of previously unknown function,"
Gerlt said.

These methods will speed the task of identifying the biological roles of some of the hundreds of thousands of proteins whose functions have not yet been discovered.

"Rather than trying to do (laboratory) experiments on 30,000 compounds to determine if they are substrates, with this approach you might do experiments on 10," Gerlt said.

The study involved a family of proteins within the large and diverse enolase superfamily. Enolases are enzymes that catalyze the breakdown of glucose and related compounds into other molecules as needed for metabolism.

The enzymes within the enolase superfamily utilize similar reaction mechanisms to one another but catalyze different reactions, complicating the task of discovering their function. There are more than 3,000 proteins in the enolase superfamily, and a majority of them have not yet been fully - or accurately - characterized. (The new study also revealed that one family of enolase proteins had been misclassified.)

Gerlt and his colleagues expect that the computational approach they pioneered will help scientists more efficiently tackle the problem of understanding these - and other - unknown proteins.

"There are 4 1/2 million protein sequences in the sequence databanks, and maybe the functions are known for, can be assigned to, half of those with some reliability," Gerlt said. "That tells you that there is a lot of biology to be discovered."

The research team included scientists from the University of California, San Francisco, and the Albert Einstein College of Medicine.

This study was supported by the National Institute of General Medical Sciences at the National Institutes of Health.

John Gerlt is Gutgsell Chair professor of biochemistry, chemistry, biophysics and computational biology, and a professor of basic medical science.

Editor's note: To reach John A. Gerlt, call 217- 244-7414; e-mail:
j-gerlt@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu
http://www.news.uiuc.edu/news/07/0711homology.html

Further reports about: Computational Gerlt enzyme sequence

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>