Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use new approach to predict protein function

12.07.2007
In a paper published online this month in the journal Nature Chemical Biology, researchers report that they have developed a way to determine the function of some of the hundreds of thousands of proteins for which amino acid sequence data are available, but whose structure and function remain unknown.
The research team, led by University of Illinois biochemistry professor John A. Gerlt, is the first to use a computational approach to accurately predict a protein's function from its amino acid sequence. Their "in silico" (computer-aided) predictions were validated in the laboratory by means of enzyme assays and X-ray crystallography.

The new approach involved searching databases of known proteins for those with amino acid sequences that had the greatest homology to the unknown proteins. The researchers then used the three-dimensional structures of the most closely matched known proteins in their analyses of protein function.

Using the structural data obtained from this homology modeling, the team performed computerized docking experiments to quickly evaluate whether the unknown proteins were likely to bind to any of a vast library of potential target molecules, or substrates. Determining which substrate binds to a given protein is vital to understanding the protein's function.

"This study describes an integrated approach using experimental techniques, computational techniques and X-ray crystallography for predicting the function of a protein of previously unknown function,"
Gerlt said.

These methods will speed the task of identifying the biological roles of some of the hundreds of thousands of proteins whose functions have not yet been discovered.

"Rather than trying to do (laboratory) experiments on 30,000 compounds to determine if they are substrates, with this approach you might do experiments on 10," Gerlt said.

The study involved a family of proteins within the large and diverse enolase superfamily. Enolases are enzymes that catalyze the breakdown of glucose and related compounds into other molecules as needed for metabolism.

The enzymes within the enolase superfamily utilize similar reaction mechanisms to one another but catalyze different reactions, complicating the task of discovering their function. There are more than 3,000 proteins in the enolase superfamily, and a majority of them have not yet been fully - or accurately - characterized. (The new study also revealed that one family of enolase proteins had been misclassified.)

Gerlt and his colleagues expect that the computational approach they pioneered will help scientists more efficiently tackle the problem of understanding these - and other - unknown proteins.

"There are 4 1/2 million protein sequences in the sequence databanks, and maybe the functions are known for, can be assigned to, half of those with some reliability," Gerlt said. "That tells you that there is a lot of biology to be discovered."

The research team included scientists from the University of California, San Francisco, and the Albert Einstein College of Medicine.

This study was supported by the National Institute of General Medical Sciences at the National Institutes of Health.

John Gerlt is Gutgsell Chair professor of biochemistry, chemistry, biophysics and computational biology, and a professor of basic medical science.

Editor's note: To reach John A. Gerlt, call 217- 244-7414; e-mail:
j-gerlt@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu
http://www.news.uiuc.edu/news/07/0711homology.html

Further reports about: Computational Gerlt enzyme sequence

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>