Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered Blood Vessels Function like Native Tissue

09.07.2007
Blood vessels that have been tissue-engineered from bone marrow adult stem cells may in the future serve as a patient's own source of new blood vessels following a coronary bypass or other procedures that require vessel replacement, according to new research from the University at Buffalo Department of Chemical and Biological Engineering.

"Our results show that bone marrow is an excellent source of adult stem cells containing smooth muscle and endothelial cells, and that these stem cells can be used in regenerative medicine for cardiovascular applications," said Stelios T. Andreadis, Ph.D., associate professor in the UB Department of Chemical and Biological Engineering in the School of Engineering and Applied Sciences.

Andreadis co-authored the paper, published recently in Cardiovascular Research, with Jin Yu Liu, Ph.D., lead author and a post doctoral researcher in Andreadis' lab.

The research demonstrates the potential for eventually growing tissue-engineered vessels out of stem cells harvested from the patients who need them, providing a desirable alternative to the venous grafts now routinely done in patients undergoing coronary bypass operations.

Disadvantages with venous grafts include limited availability of vessels, pain and discomfort at the donor site and a high 10-year failure rate.

The UB researchers developed a novel method for isolating functional smooth muscle cells from bone marrow by using a fluorescent marker protein and a tissue-specific promoter for alpha-actin, a protein found in muscles that is responsible for their ability to contract and relax.

Although not yet strong enough for coronary applications, the UB group's tissue-engineered vessels (TEVs) performed similarly to native tissue in critical ways, including their morphology, their expression of several smooth muscle cell proteins, the ability to proliferate and the ability to contract in response to vasoconstrictors, one of the most important properties of blood vessels.

The TEVs also produced both collagen and elastin, which give connective tissue their strength and elasticity and are critical to the functioning of artificial blood vessels.

"These are the first tissue-engineered vessels to demonstrate the ability to make elastin in vivo," said Andreadis.

In addition, the smooth muscle cells isolated from the bone marrow are mesenchymal cells, that is, stem cells that can differentiate into several cell types.

Several studies have shown that mesenchymal stem cells may be immunoprivileged, which means they will not trigger an immune reaction when transplanted into another individual, Andreadis said.

"If true, this means that you may be able to develop a universal cell source for smooth muscle cells, so that you could potentially make these vessels into an 'off-the-shelf' product, available to any patient," Andreadis said.

The TEVs were implanted into sheep and functioned normally for five weeks.

Andreadis' group now is working on ways to make the TEVs stronger. It also is studying the differences between stem cells taken from older versus younger individuals, work that is being funded by the John R. Oishei Foundation.

Co-authors on the paper with Andreadis and J.Y. Liu include Daniel D. Swartz, Ph.D., research assistant professor at Women and Children's Hospital of Buffalo; Sylvia F. Gugino, UB senior research support specialist; James A. Russell, Ph.D., in the UB Department of Physiology and Biophysics; and Hao Fan Peng, graduate student in the Department of Chemical and Biological Engineering.

Funding for the current work came from UB's Integrative Research and Creative Activities Fund in the UB Office of the Vice President for Research.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Andreadis Engineering TEVs marrow smooth tissue-engineered vessel

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>