Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered Blood Vessels Function like Native Tissue

09.07.2007
Blood vessels that have been tissue-engineered from bone marrow adult stem cells may in the future serve as a patient's own source of new blood vessels following a coronary bypass or other procedures that require vessel replacement, according to new research from the University at Buffalo Department of Chemical and Biological Engineering.

"Our results show that bone marrow is an excellent source of adult stem cells containing smooth muscle and endothelial cells, and that these stem cells can be used in regenerative medicine for cardiovascular applications," said Stelios T. Andreadis, Ph.D., associate professor in the UB Department of Chemical and Biological Engineering in the School of Engineering and Applied Sciences.

Andreadis co-authored the paper, published recently in Cardiovascular Research, with Jin Yu Liu, Ph.D., lead author and a post doctoral researcher in Andreadis' lab.

The research demonstrates the potential for eventually growing tissue-engineered vessels out of stem cells harvested from the patients who need them, providing a desirable alternative to the venous grafts now routinely done in patients undergoing coronary bypass operations.

Disadvantages with venous grafts include limited availability of vessels, pain and discomfort at the donor site and a high 10-year failure rate.

The UB researchers developed a novel method for isolating functional smooth muscle cells from bone marrow by using a fluorescent marker protein and a tissue-specific promoter for alpha-actin, a protein found in muscles that is responsible for their ability to contract and relax.

Although not yet strong enough for coronary applications, the UB group's tissue-engineered vessels (TEVs) performed similarly to native tissue in critical ways, including their morphology, their expression of several smooth muscle cell proteins, the ability to proliferate and the ability to contract in response to vasoconstrictors, one of the most important properties of blood vessels.

The TEVs also produced both collagen and elastin, which give connective tissue their strength and elasticity and are critical to the functioning of artificial blood vessels.

"These are the first tissue-engineered vessels to demonstrate the ability to make elastin in vivo," said Andreadis.

In addition, the smooth muscle cells isolated from the bone marrow are mesenchymal cells, that is, stem cells that can differentiate into several cell types.

Several studies have shown that mesenchymal stem cells may be immunoprivileged, which means they will not trigger an immune reaction when transplanted into another individual, Andreadis said.

"If true, this means that you may be able to develop a universal cell source for smooth muscle cells, so that you could potentially make these vessels into an 'off-the-shelf' product, available to any patient," Andreadis said.

The TEVs were implanted into sheep and functioned normally for five weeks.

Andreadis' group now is working on ways to make the TEVs stronger. It also is studying the differences between stem cells taken from older versus younger individuals, work that is being funded by the John R. Oishei Foundation.

Co-authors on the paper with Andreadis and J.Y. Liu include Daniel D. Swartz, Ph.D., research assistant professor at Women and Children's Hospital of Buffalo; Sylvia F. Gugino, UB senior research support specialist; James A. Russell, Ph.D., in the UB Department of Physiology and Biophysics; and Hao Fan Peng, graduate student in the Department of Chemical and Biological Engineering.

Funding for the current work came from UB's Integrative Research and Creative Activities Fund in the UB Office of the Vice President for Research.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Andreadis Engineering TEVs marrow smooth tissue-engineered vessel

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>