Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries Later, Chinese Lotus Seeds Still Sprout

26.02.2002


Nearly 500 years after forming in their parent plant, lotus seeds from a Chinese lakebed have sprouted seedlings of their own, researchers say. According to the lead author of a study detailing the findings, published in the current issue of the American Journal of Botany, the cultivation of offspring from seeds this ancient is "a first in plant biology."




Biologist Jane Shen-Miller of the University of California, Los Angeles, and colleagues collected 20 ancient lotus seeds on a trip to China’s Liaoning Province. Radiocarbon dated at between 200 and 500 years old, the four seeds that the team tested for viability all sent up shoots. But the plants have not fully escaped the effects of time: all exhibit abnormalities in their leaves, stalks and underground stems. "Instead of standing up straight with strong leaves, these were smaller, the leaves were weak and bent, displayed abnormalities in color, and the underground stems were small and not getting enough food," Shen-Miller reports. The culprit, she surmises, is long-term, low-dose radiation from the soils in which the seeds resided. (The lotus pictured at the right did not arise from the seeds discussed here.)

Still, the radiation exposure does not appear to have hampered germination. "The lotus is so robust that it can sprout after centuries of exposure to low-dose gamma radiation," Shen-Miller observes. "We need to learn about its repair mechanisms, and about its biochemical, physiological and molecular properties. The repair mechanisms in the lotus would be very useful if they could be transferred to crops, such as rice, corn and wheat, whose seeds have lifespans of only a few years."

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>