Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE scientists find link between wilting plants and impotence

22.02.2002


Researchers studying plant behaviour have discovered similarities between the processes preventing plants from wilting and humans from suffering impotence. Data recently published by the University of the West of England shows the same chemical chain of events is involved in both situations - and has led to an understanding of how water loss from plants might be reduced.



This blocking action has parallels with the chemical effect of impotence treatments in humans. Plants lose water through their stomata, small pores surrounded by guard cells, that cover the leaves. The signals governing the opening and closing of a plant`s stomata are closely allied to the way human blood vessels contract and relax to control blood flow.

The key finding of the research concerns the role played by nitric oxide in the closure of the plant`s stomata. Researchers from UWE`s Faculty of Applied Sciences demonstrated this in a series of experiments in which chemicals to `scavenge` nitric oxide or inhibit its action were added. The reaction of the cells could be clearly measured under the microscope. In other tests, fluorescent dyes that react to the presence of nitric oxide were added to show the effect of different `scavengers` on the guard cells under a special confocal microscope.


This discovery could have wide practical implications for developing drought- resistant plants for areas of the world suffering severe water shortages. Possible ways of achieving this include selective breeding or by the addition of agrochemicals acting as a form of Viagra for plants.

"It has been known for some time that a stress hormone called abscisic acid or ABA is activated in plants under certain conditions such as drought," said lead researcher Dr Steve Neill, of UWE`s Centre for Research in Plant Science.

"What wasn`t clear before was the important role played by nitric oxide. This substance, well-known as a signal molecule in humans, is made in response to ABA and causes the formation of a messenger molecule that acts inside the guard cells. This offers a new opportunity to manipulate a plant`s water requirements which could impact significantly on crop productivity."

Julia Weston | alphagalileo

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>