Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE scientists find link between wilting plants and impotence

22.02.2002


Researchers studying plant behaviour have discovered similarities between the processes preventing plants from wilting and humans from suffering impotence. Data recently published by the University of the West of England shows the same chemical chain of events is involved in both situations - and has led to an understanding of how water loss from plants might be reduced.



This blocking action has parallels with the chemical effect of impotence treatments in humans. Plants lose water through their stomata, small pores surrounded by guard cells, that cover the leaves. The signals governing the opening and closing of a plant`s stomata are closely allied to the way human blood vessels contract and relax to control blood flow.

The key finding of the research concerns the role played by nitric oxide in the closure of the plant`s stomata. Researchers from UWE`s Faculty of Applied Sciences demonstrated this in a series of experiments in which chemicals to `scavenge` nitric oxide or inhibit its action were added. The reaction of the cells could be clearly measured under the microscope. In other tests, fluorescent dyes that react to the presence of nitric oxide were added to show the effect of different `scavengers` on the guard cells under a special confocal microscope.


This discovery could have wide practical implications for developing drought- resistant plants for areas of the world suffering severe water shortages. Possible ways of achieving this include selective breeding or by the addition of agrochemicals acting as a form of Viagra for plants.

"It has been known for some time that a stress hormone called abscisic acid or ABA is activated in plants under certain conditions such as drought," said lead researcher Dr Steve Neill, of UWE`s Centre for Research in Plant Science.

"What wasn`t clear before was the important role played by nitric oxide. This substance, well-known as a signal molecule in humans, is made in response to ABA and causes the formation of a messenger molecule that acts inside the guard cells. This offers a new opportunity to manipulate a plant`s water requirements which could impact significantly on crop productivity."

Julia Weston | alphagalileo

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>