Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE scientists find link between wilting plants and impotence

22.02.2002


Researchers studying plant behaviour have discovered similarities between the processes preventing plants from wilting and humans from suffering impotence. Data recently published by the University of the West of England shows the same chemical chain of events is involved in both situations - and has led to an understanding of how water loss from plants might be reduced.



This blocking action has parallels with the chemical effect of impotence treatments in humans. Plants lose water through their stomata, small pores surrounded by guard cells, that cover the leaves. The signals governing the opening and closing of a plant`s stomata are closely allied to the way human blood vessels contract and relax to control blood flow.

The key finding of the research concerns the role played by nitric oxide in the closure of the plant`s stomata. Researchers from UWE`s Faculty of Applied Sciences demonstrated this in a series of experiments in which chemicals to `scavenge` nitric oxide or inhibit its action were added. The reaction of the cells could be clearly measured under the microscope. In other tests, fluorescent dyes that react to the presence of nitric oxide were added to show the effect of different `scavengers` on the guard cells under a special confocal microscope.


This discovery could have wide practical implications for developing drought- resistant plants for areas of the world suffering severe water shortages. Possible ways of achieving this include selective breeding or by the addition of agrochemicals acting as a form of Viagra for plants.

"It has been known for some time that a stress hormone called abscisic acid or ABA is activated in plants under certain conditions such as drought," said lead researcher Dr Steve Neill, of UWE`s Centre for Research in Plant Science.

"What wasn`t clear before was the important role played by nitric oxide. This substance, well-known as a signal molecule in humans, is made in response to ABA and causes the formation of a messenger molecule that acts inside the guard cells. This offers a new opportunity to manipulate a plant`s water requirements which could impact significantly on crop productivity."

Julia Weston | alphagalileo

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>