Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female Antarctic seals give cold shoulder to local males

08.02.2007
Female Antarctic fur seals will travel across a colony to actively seek males which are genetically diverse and unrelated, rather than mate with local dominant males.

These findings, published in this week's Nature, suggest that female choice may be more widespread in nature than previously believed and that such strategies enable species to maintain genetic diversity.

Scientists from the University of Cambridge and the British Antarctic Survey (BAS) studied a colony of Antarctic fur seals (Arctocephalus gazella) on the subantarctic island of South Georgia. They discovered that female fur seals will travel up to 35 metres to find a mate with high genetic diversity and to avoid inbreeding (while the males will remain static waiting to be chosen).

This unique mating practice enables the seals to avoid the loss of genetic variation which occurs when females of the species only mate with dominant males with favoured traits. This is significant as studies have shown that more genetically diverse individuals tend to be more resistant to disease, carry fewer parasites, and in the case of males, are more aggressive and father more offspring.

... more about:
»Antarctic »Genetic »fur

It had long been assumed that the females were passive, simply mating with their nearest male. However, using paternity tests, the scientists demonstrated that only a quarter of the females conceived to their nearest male.

Dr Joe Hoffman, at the Department of Zoology, University of Cambridge, said: "Many mammalian species have mating systems that were traditionally viewed as being dominated by males fighting with each other for the right to mate with passive females. So it's not only remarkable to uncover active female choice in such a system, but this also suggests that female choice may be more widespread in nature than we previously thought."

Studies of other species have shown links between genetic variation and visual traits. The scientists believe that female fur seals may be able to assess male genetic traits visually by examining body size and condition, dominant behaviours, or territory quality. Another possibility is that females can use smell to determine whether they are related to the male.

Commenting on the practical implications for fur seal populations, Dr Hoffman said, "Antarctic fur seals are a key player in the Southern Ocean ecosystem. Scientists conducting research to preserve this ecosystem need to know as much about their biology as possible. The behaviours that we observe will impact upon the genetic diversity of fur seal populations and may have helped them recover so successfully from near extinction only 100 years ago. This could in turn affect how well they respond to future challenges such as climate change."

Antarctic fur seals were nearly hunted to extinction in the 17th and 18th Centuries by commercial sealers. There numbers are now estimated at between 2 and 3 million.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: Antarctic Genetic fur

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>