Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female Antarctic seals give cold shoulder to local males

08.02.2007
Female Antarctic fur seals will travel across a colony to actively seek males which are genetically diverse and unrelated, rather than mate with local dominant males.

These findings, published in this week's Nature, suggest that female choice may be more widespread in nature than previously believed and that such strategies enable species to maintain genetic diversity.

Scientists from the University of Cambridge and the British Antarctic Survey (BAS) studied a colony of Antarctic fur seals (Arctocephalus gazella) on the subantarctic island of South Georgia. They discovered that female fur seals will travel up to 35 metres to find a mate with high genetic diversity and to avoid inbreeding (while the males will remain static waiting to be chosen).

This unique mating practice enables the seals to avoid the loss of genetic variation which occurs when females of the species only mate with dominant males with favoured traits. This is significant as studies have shown that more genetically diverse individuals tend to be more resistant to disease, carry fewer parasites, and in the case of males, are more aggressive and father more offspring.

... more about:
»Antarctic »Genetic »fur

It had long been assumed that the females were passive, simply mating with their nearest male. However, using paternity tests, the scientists demonstrated that only a quarter of the females conceived to their nearest male.

Dr Joe Hoffman, at the Department of Zoology, University of Cambridge, said: "Many mammalian species have mating systems that were traditionally viewed as being dominated by males fighting with each other for the right to mate with passive females. So it's not only remarkable to uncover active female choice in such a system, but this also suggests that female choice may be more widespread in nature than we previously thought."

Studies of other species have shown links between genetic variation and visual traits. The scientists believe that female fur seals may be able to assess male genetic traits visually by examining body size and condition, dominant behaviours, or territory quality. Another possibility is that females can use smell to determine whether they are related to the male.

Commenting on the practical implications for fur seal populations, Dr Hoffman said, "Antarctic fur seals are a key player in the Southern Ocean ecosystem. Scientists conducting research to preserve this ecosystem need to know as much about their biology as possible. The behaviours that we observe will impact upon the genetic diversity of fur seal populations and may have helped them recover so successfully from near extinction only 100 years ago. This could in turn affect how well they respond to future challenges such as climate change."

Antarctic fur seals were nearly hunted to extinction in the 17th and 18th Centuries by commercial sealers. There numbers are now estimated at between 2 and 3 million.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: Antarctic Genetic fur

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>