Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Electric' fish shed light on ways the brain directs movement

01.02.2007
Research could lead to improvements in prosthetic limbs and robots

Scientists have long struggled to figure out how the brain guides the complex movement of our limbs, from the graceful leaps of ballerinas to the simple everyday act of picking up a cup of coffee. Using tools from robotics and neuroscience, two Johns Hopkins University researchers have found some tantalizing clues in an unlikely mode of motion: the undulations of tropical fish.

Their findings, published in the January 31 issue of the Journal of Neuroscience, shed new light on the communication that takes place between the brain and body. The fish research may contribute to important medical advances in humans, including better prosthetic limbs and improved rehabilitative techniques for people suffering from strokes, cerebral palsy and other debilitating conditions.

"All animals, including humans, must continually make adjustments as they walk, run, fly or swim through the environment. These adjustments are based on feedback from thousands of sense organs all over the body, providing vision, touch, hearing and so on. Understanding how the brain processes this overwhelming amount of information is crucial if we want to help people overcome pathologies," said Noah Cowan, an assistant professor of mechanical engineering in Johns Hopkins' Whiting School of Engineering. In studying the fish and preparing the Neuroscience paper, Cowan teamed up with Eric Fortune, assistant professor of psychological and brain sciences in the Krieger School of Arts and Sciences, also at Johns Hopkins.

... more about:
»Cowan »Engineering »Fortune »Tube »nervous system

Cowan and Fortune focused on the movements of a small, nocturnal South American fish called the "glass knifefish" because of its almost transparent, blade-shaped body. This type of fish does something remarkable: it emits weak electrical signals which it uses to "see" in the dark. According to Fortune, several characteristics, including this electric sense, make this fish a superb subject for the study of how the brain uses sensory information to control locomotion.

"These fish are ideal both because we can easily monitor the sensing signals that their brains use and because the task we asked the fish to do -- swim forward and backward inside a small tube -- is very simple and straightforward," said Fortune, who also uses the fish to study the neural basis and evolution of behavior.

The fish prefer to "hide" inside these tubes, which are immersed in larger water tanks. In their research, Cowan and Fortune challenged the fish's ability to remain hidden by shifting the tubes forward and backward at varying frequencies. This required the fish to swim back and forth more and more rapidly in order to remain inside the tubes. But as the frequency became higher, the fish gradually failed to keep up with the movement of the tubes.

The team's detailed engineering analysis of the fish's adjustments under these conditions suggested that the animal's sensors and brains are "tuned" to consider Newton's laws of motion, Cowan said. In other words, the team found that the fish's nervous systems measured velocity, so the fish could accelerate or "brake" at just the right rate to remain within the moving tube.

"The fish were able to accelerate, brake and reverse direction based on a cascade of adjustments made through their sensory and nervous systems, in the same way that a driver approaching a red light knows he has to apply the brakes ahead of time to avoid overshooting and ending up in the middle of a busy intersection," Fortune said. "Your brain has to do this all the time when controlling movement because your body and limbs, like a car, have mass. This is true for large motions that require planning, such as driving a car, but also for unconscious control of all movements, such as reaching for a cup of coffee. Without this sort of predictive control, your hand would knock the cup off the table every time."

The researchers' understanding of the complex relationship between the glass knifefish's movements and the cascade of information coming into their brains and bodies via their senses could eventually spark developments in areas as far reaching as medicine and robotics.

"That animals unconsciously know that they have mass seems obvious enough, but it took a complex analysis of a very specialized fish to demonstrate this," Fortune said. "With this basic knowledge, we hope one day to be able to ‘tune' artificial systems, such as prosthetics, so that they don't have the jerky and rough movements that most robots have, which is critical for medical applications."

The team's use of both neuroscience and engineering principles and tools also make it an important project for other reasons.

"So far, we have used a series of engineering analyses to tease apart some important information about how the nervous system works," Cowan said. "As we move forward, we expect to discover other exciting aspects of brain function that suggest new ways to design sensory control systems for autonomous robots."

Lisa De Nike | EurekAlert!
Further information:
http://limbs.me.jhu.edu/
http://www.psy.jhu.edu/~fortune/

Further reports about: Cowan Engineering Fortune Tube nervous system

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>