Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WISDOM’S New Fight Against Malaria

01.02.2007
The WIDSOM initiative went into top gear with its latest drug discovery challenge, which finished 31 January with an average of 80,000 compounds analysed each hour on the EGEE Grid infrastructure. In total, the challenge processed over 140 million possible docking arrangements between drug compounds and target proteins of the malaria parasite.

This virtual screening challenge of the international WISDOM (World-wide In Silico Docking On Malaria) initiative between 1 October and 31 January targeted compounds that are of interest for drug discovery against neglected diseases. WISDOM uses in silico docking techniques, where researchers use computing systems to compute the probability that potential drugs will dock with a target protein.

This lets researchers rule out the vast majority of potential drugs, so that they can concentrate on the most promising compounds in laboratory tests. This speeds up the screening process and reduces the cost of new drug development to treat diseases such as malaria.

“The impact of WISDOM goes much beyond malaria,” declared Doman Kim, Director of the Bioindustry and Technology Institute at Jeonnam National University in Korea. “The method developed can be extended to all diseases and this opens exciting industrial perspectives. Until now, the search for new drugs in the academic sector was done at a relatively small scale, whereas the WISDOM approach allows a systematic inquiry of all the potentially interesting molecules.”

... more about:
»Computing »Malaria »WISDOM »compounds »docking

This challenge was the consequence of the first, very successful large scale in silico docking, which ran on the EGEE Grid in summer 2005, when WISDOM docked over 41 million compounds in just six weeks, the equivalent of 80 years work for a single PC. The WISDOM team identified some 5000 interesting compounds, from which they found three interesting families of molecules that could be effective against the malaria parasite. Laboratories at the University of Modena, CNRS in France and CNR-ITB in Italy are now carrying out more advanced studies of the molecules using molecular dynamics. Following those studies, the enzymology laboratory of the Jeonnam National University in Korea will test them in vitro.

A second computing challenge targeting Avian Flu in April and May 2006 has significantly raised the interest of the biomedical research community. Laboratories in France, Italy, Venezuela and South Africa proposed targets for the second challenge against neglected diseases.

The WISDOM endeavour would be impossible without the support from BioSolveIT, a German firm who provided more than 6000 free floating licenses for their commercial docking program FlexX. "The WISDOM programme is very interesting and BioSolveIT is happy to sponsor this work,” says Dr Christian Lemmen, CEO of BioSolveIT. “The initiative takes full advantage of the speed and accuracy of FlexX – demonstrating the potential of the virtual screening technique in the search for drugs against neglected diseases.” Due to the initial success of the data challenge, the company even decided to extend the FlexX license for several weeks which allowed studying a new target.

In addition to the computing power that the EGEE Grid provided, AuverGrid, EELA, EUChinaGRID, EUMedGRID and South East Asia Grid all provided additional resources. The Embrace and BioinfoGRID projects are contributing to the development of a virtual, in silico screening pipeline that will allow researchers to select, for any given target protein, the most active molecules out of the millions of compounds commercially available.

Over the 10 weeks of the challenge, the project used the equivalent of 420 years of computing power of a single PC. Up to 5000 computers were used simultaneously in 27 countries, generating a total of 2000GB of useful data.

Hannelore Hammerle | alfa
Further information:
http://www.eu-egee.org/press_releases

Further reports about: Computing Malaria WISDOM compounds docking

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>