Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WISDOM’S New Fight Against Malaria

01.02.2007
The WIDSOM initiative went into top gear with its latest drug discovery challenge, which finished 31 January with an average of 80,000 compounds analysed each hour on the EGEE Grid infrastructure. In total, the challenge processed over 140 million possible docking arrangements between drug compounds and target proteins of the malaria parasite.

This virtual screening challenge of the international WISDOM (World-wide In Silico Docking On Malaria) initiative between 1 October and 31 January targeted compounds that are of interest for drug discovery against neglected diseases. WISDOM uses in silico docking techniques, where researchers use computing systems to compute the probability that potential drugs will dock with a target protein.

This lets researchers rule out the vast majority of potential drugs, so that they can concentrate on the most promising compounds in laboratory tests. This speeds up the screening process and reduces the cost of new drug development to treat diseases such as malaria.

“The impact of WISDOM goes much beyond malaria,” declared Doman Kim, Director of the Bioindustry and Technology Institute at Jeonnam National University in Korea. “The method developed can be extended to all diseases and this opens exciting industrial perspectives. Until now, the search for new drugs in the academic sector was done at a relatively small scale, whereas the WISDOM approach allows a systematic inquiry of all the potentially interesting molecules.”

... more about:
»Computing »Malaria »WISDOM »compounds »docking

This challenge was the consequence of the first, very successful large scale in silico docking, which ran on the EGEE Grid in summer 2005, when WISDOM docked over 41 million compounds in just six weeks, the equivalent of 80 years work for a single PC. The WISDOM team identified some 5000 interesting compounds, from which they found three interesting families of molecules that could be effective against the malaria parasite. Laboratories at the University of Modena, CNRS in France and CNR-ITB in Italy are now carrying out more advanced studies of the molecules using molecular dynamics. Following those studies, the enzymology laboratory of the Jeonnam National University in Korea will test them in vitro.

A second computing challenge targeting Avian Flu in April and May 2006 has significantly raised the interest of the biomedical research community. Laboratories in France, Italy, Venezuela and South Africa proposed targets for the second challenge against neglected diseases.

The WISDOM endeavour would be impossible without the support from BioSolveIT, a German firm who provided more than 6000 free floating licenses for their commercial docking program FlexX. "The WISDOM programme is very interesting and BioSolveIT is happy to sponsor this work,” says Dr Christian Lemmen, CEO of BioSolveIT. “The initiative takes full advantage of the speed and accuracy of FlexX – demonstrating the potential of the virtual screening technique in the search for drugs against neglected diseases.” Due to the initial success of the data challenge, the company even decided to extend the FlexX license for several weeks which allowed studying a new target.

In addition to the computing power that the EGEE Grid provided, AuverGrid, EELA, EUChinaGRID, EUMedGRID and South East Asia Grid all provided additional resources. The Embrace and BioinfoGRID projects are contributing to the development of a virtual, in silico screening pipeline that will allow researchers to select, for any given target protein, the most active molecules out of the millions of compounds commercially available.

Over the 10 weeks of the challenge, the project used the equivalent of 420 years of computing power of a single PC. Up to 5000 computers were used simultaneously in 27 countries, generating a total of 2000GB of useful data.

Hannelore Hammerle | alfa
Further information:
http://www.eu-egee.org/press_releases

Further reports about: Computing Malaria WISDOM compounds docking

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>