Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WISDOM’S New Fight Against Malaria

01.02.2007
The WIDSOM initiative went into top gear with its latest drug discovery challenge, which finished 31 January with an average of 80,000 compounds analysed each hour on the EGEE Grid infrastructure. In total, the challenge processed over 140 million possible docking arrangements between drug compounds and target proteins of the malaria parasite.

This virtual screening challenge of the international WISDOM (World-wide In Silico Docking On Malaria) initiative between 1 October and 31 January targeted compounds that are of interest for drug discovery against neglected diseases. WISDOM uses in silico docking techniques, where researchers use computing systems to compute the probability that potential drugs will dock with a target protein.

This lets researchers rule out the vast majority of potential drugs, so that they can concentrate on the most promising compounds in laboratory tests. This speeds up the screening process and reduces the cost of new drug development to treat diseases such as malaria.

“The impact of WISDOM goes much beyond malaria,” declared Doman Kim, Director of the Bioindustry and Technology Institute at Jeonnam National University in Korea. “The method developed can be extended to all diseases and this opens exciting industrial perspectives. Until now, the search for new drugs in the academic sector was done at a relatively small scale, whereas the WISDOM approach allows a systematic inquiry of all the potentially interesting molecules.”

... more about:
»Computing »Malaria »WISDOM »compounds »docking

This challenge was the consequence of the first, very successful large scale in silico docking, which ran on the EGEE Grid in summer 2005, when WISDOM docked over 41 million compounds in just six weeks, the equivalent of 80 years work for a single PC. The WISDOM team identified some 5000 interesting compounds, from which they found three interesting families of molecules that could be effective against the malaria parasite. Laboratories at the University of Modena, CNRS in France and CNR-ITB in Italy are now carrying out more advanced studies of the molecules using molecular dynamics. Following those studies, the enzymology laboratory of the Jeonnam National University in Korea will test them in vitro.

A second computing challenge targeting Avian Flu in April and May 2006 has significantly raised the interest of the biomedical research community. Laboratories in France, Italy, Venezuela and South Africa proposed targets for the second challenge against neglected diseases.

The WISDOM endeavour would be impossible without the support from BioSolveIT, a German firm who provided more than 6000 free floating licenses for their commercial docking program FlexX. "The WISDOM programme is very interesting and BioSolveIT is happy to sponsor this work,” says Dr Christian Lemmen, CEO of BioSolveIT. “The initiative takes full advantage of the speed and accuracy of FlexX – demonstrating the potential of the virtual screening technique in the search for drugs against neglected diseases.” Due to the initial success of the data challenge, the company even decided to extend the FlexX license for several weeks which allowed studying a new target.

In addition to the computing power that the EGEE Grid provided, AuverGrid, EELA, EUChinaGRID, EUMedGRID and South East Asia Grid all provided additional resources. The Embrace and BioinfoGRID projects are contributing to the development of a virtual, in silico screening pipeline that will allow researchers to select, for any given target protein, the most active molecules out of the millions of compounds commercially available.

Over the 10 weeks of the challenge, the project used the equivalent of 420 years of computing power of a single PC. Up to 5000 computers were used simultaneously in 27 countries, generating a total of 2000GB of useful data.

Hannelore Hammerle | alfa
Further information:
http://www.eu-egee.org/press_releases

Further reports about: Computing Malaria WISDOM compounds docking

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>