Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disorderly protein brings order to cell division

30.01.2007
St. Jude study shows disorderliness of the p27 yoke that suppresses activity of the cell-division molecule CDK2 is key to the ability of p27 to participate in its own destruction and set CDK2 free

The secret to the ability of a molecule critical for cell division to throw off the protein yoke that restrains its activity is the yoke itself—a disorderly molecule that seems to have a mind of its own, say investigators at St. Jude Children's Research Hospital, Innsbruck Medical University (Austria) and Max Planck Institute (Martinsried, Germany).

The researchers showed that the disorderly protein yoke, called p27, participates in its own destruction by swinging the end of its long arm up into a key side pocket of the cell division molecule called CDK2. After the end of p27 slips into the pocket, CDK2 marks p27 for destruction by tagging it with a molecule called phosphate. The tag signals the cell's protein destruction machinery to dispose of p27, freeing CDK2 to trigger cell division.

The finding is important because it explains how CDK2 normally shrugs off p27. Once free of p27, CDK2 can participate in a specific step of cell division. The findings also explain how some abnormal enzymes cause this to occur prematurely, putting cell division into overdrive—a state that produces cancer. A report on the work appears in the January 25 issue of the journal Cell.

... more about:
»CDK2 »Kinase »Kriwacki »T187 »abnormal »activity »amino acid »elbow »enzymes »p27 »yoke

The long p27 molecule drapes itself like an arm over the shoulders and down the side of CDK2, the researchers explained. The upper arm of p27 binds tightly to the shoulders of CDK2; as the arm drops over the shoulders, the "elbow" of p27 inserts itself into a side "pocket" of the molecule.

Meanwhile, the long, floppy forearm and hand of p27 hangs freely below CDK2. Initailly, this is where the story of p27 became puzzling: the part of p27 that CDK2 must tag is on the "hand" at the free end of the floppy arm, at a point called amino acid threonine 187 (T187). But CDK2 can tag T187 only when this part of p27 fits into the pocket of CDK2, where the elbow of p27 is already lodged.

"Previous studies produced conflicting evidence to explain how CDK2 disposes of p27," said Richard Kriwacki, Ph.D., associate member of the Department of Structural Biology at St. Jude. "We knew p27 inactivated CDK2; yet we also knew that CDK2 tags T187 with phosphate even while it still carries the p27 yoke on its shoulders. The question was, how does the pocket of CDK2 tag T187 while T187 is so far away and the pocket itself has the elbow of p27 jammed into it? What we knew about the process didn't make sense."

The key to both normal and premature tagging of p27 and its subsequent destruction is the activity of enzymes called kinases, according to Kriwacki. Kinases are enzymes that tag specific amino acids—the building blocks of proteins—with phosphate. CDK2 itself is a kinase, which is why it can tag the hand of p27 with a phosphate group.

The team showed that a specific type of kinase tags the elbow of p27 at a spot called amino acid Y88. This causes the elbow to change shape and pop out of CDK2's side pocket. The floppy end of p27 carrying T187 is then free to swing up and insert its hand into the pocket of CDK2, where T187 gets tagged by phosphate. "Our study showed that because the floppy part of p27 is so unstructured it can move around freely and swing up and into the CDK2 pocket," Kriwacki said.

Normally, p27 is removed from CDK2 only at a specific time during the precise process that leads to cell division, Kriwacki noted. "However, some abnormal kinase enzymes, called tyrosine kinases, jump the gun and tag the elbow of p27 before CDK2 should become active," he said. "This sets CDK2 free to push the cell to divide, even when it shouldn't."

"The findings explain why the anti-cancer drug Gleevec® is effective in treating some forms of leukemia in certain individuals," said Yuefeng Wang, Ph.D., a postdoctoral student in Kriwacki's laboratory who did much of the work on this project. "Gleevec blocks the abnormal tyrosine kinase BCR-ABL and prevents it from tagging Y88," he said. "That keeps the elbow of p27 lodged in the pocket of CDK2 and prevents premature cell division. Our study suggests that other cancer-causing tyrosine kinases may also trigger premature CDK2 activity."

Results of the study suggest that blocking the CDK2 pocket after an abnormal kinase dislodges the p27 elbow might be an effective strategy for preventing cancer cell division, Kriwacki said.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org
http://www.stjude.org/media/0,2561,453_2816_21701,00.html

Further reports about: CDK2 Kinase Kriwacki T187 abnormal activity amino acid elbow enzymes p27 yoke

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>