Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Team Finds Crucial Protein Role in Deadly Prion Spread

25.01.2007
Brown University biologists have made another major advance toward understanding the deadly work of prions, the culprits behind fatal brain diseases such as mad cow and their human counterparts. In new work published online in PLoS Biology, researchers show that the protein Hsp104 must be present and active for prions to multiply and cause disease.

A single protein plays a major role in deadly prion diseases by smashing up clusters of these infectious proteins, creating the “seeds” that allow fatal brain illnesses to quickly spread, new Brown University research shows.

The findings are exciting, researchers say, because they might reveal a way to control the spread of prions through drug intervention. If a drug could be made that inhibits this fragmentation process, it could substantially slow the spread of prions, which cause mad cow disease and scrapie in animals and, in rare cases, Creutzfeldt-Jacob disease and kuru in humans.

Because similar protein replication occurs in Alzheimer’s and Parkinson’s diseases, such a drug could also slow progression of these diseases as well.

... more about:
»Hsp104 »Serio »fragmentation »multiply

“The protein fragmentation we studied has a big impact on how fast prion diseases spread and may also play a role in the accumulation of toxic proteins in neurodegenerative diseases like Parkinson’s,” said Tricia Serio, an assistant professor in Brown’s Department of Molecular Biology, Cell Biology and Biochemistry and lead researcher on the project.

The findings from Serio and her team, which appear online in PLoS Biology, build on their groundbreaking work published in Nature in 2005. That research showed that prions – strange, self-replicating proteins that cause fatal brain diseases – convert healthy protein into abnormal protein through an ultrafast process.

This good-gone-bad conversion is one way that prions multiply and spread disease. But scientists believe that there is another crucial step in this propagation process – fragmentation of existing prion complexes. Once converted, the thinking goes, clusters of “bad” or infectious protein are smashed into smaller bits, a process that creates “seeds” so that prions multiply more quickly in the body. Hsp104, a molecule known to be required for prion replication, could function as this protein “crusher,” Serio thought.

To test these ideas, Serio and members of her lab studied Sup35, a yeast protein similar to the human prion protein PrP. They put Sup35 together with Hsp104, then activated and deactivated Hsp104. They found that the protein does, indeed, chop up Sup35 complexes – the first direct evidence that this process occurs in a living cell and that Hsp104 is the culprit.

“To understand how fragmentation speeds the spread of prions, think of a dandelion,” Serio said. “A dandelion head is a cluster of flowers that each carries a seed. When the flower dries up and the wind blows, the seeds disperse. Prion protein works the same way. Hsp104 acts like the wind, blowing apart the flower and spreading the seeds.”

Serio said that prions still multiply without fragmentation. However, she said, they do so at a much slower rate. So a drug that blocked the activity of Hsp104 could seriously slow progression of prion-related diseases.

Former graduate student Prasanna Satpute-Krishnan and research associate Sara Langseth, also in Brown’s Department of Molecular Biology, Cell Biology and Biochemistry, conducted the work with Serio.

The National Cancer Institute, the National Institute of General Medical Sciences, and the Pew Scholars Program in the Biomedical Sciences funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | Brown University
Further information:
http://www.brown.edu

Further reports about: Hsp104 Serio fragmentation multiply

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>