Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Biologics awarded £560,000 to boost ‘Green’ Fuel Development

25.01.2007
An Oxfordshire biotechnology company is set to develop a new low-cost ‘next generation’ biofuel, with £250,000 funding from the Department of Trade and Industry’s Technology Programme and £310,000 from shareholder investors and business angels.

Green Biologics Ltd plans to develop a way of manufacturing biobutanol, identified as a superior ‘next generation’ biofuel for transport, which will slash the cost of production by up to a third. Biobutanol is currently used as a chemical feed for stock but high production costs have prevented it being widely used as a fuel.

Green Biologics has also announced the appointment of Dr Andrew Rickman OBE as non-executive Chairman. Dr Rickman founded Bookham Technology Inc, the world’s second largest fibre optics telecom component producer, and is actively involved with a number of growing technology companies.

Minister for Science and Innovation, Malcolm Wicks, said: “The development of biofuels is expected to play a major part in reducing transport emissions post 2020. We need companies like Green Biologics to work on developing the technology now needed to make new types of biofuel to help meet our future goals.

“Tackling climate change is a huge global challenge. We believe the UK must put its best efforts towards developing the new technologies we need to help cut carbon emissions. There’s also a great economic opportunity for UK businesses in investing in this area.”

Green Biologics Founder & CEO, Dr Edward Green, said: “Biofuels, such as biobutanol, are sustainable and environmentally friendly ‘next generation’ fuels that will extend, and ultimately replace, fossil fuels such as petrol and diesel. Although butanol is not currently used as a biofuel, it has a number of properties that make it extremely attractive. It is a renewable liquid fuel, produced from the fermentation of sugars, which can easily be integrated into the existing fuel infrastructure by blending with conventional fuels like petrol and diesel. Unlike bioethanol, it offers similar energy per litre to petrol, has low vapour pressure and is easy to store, handle and transport via pipelines.”

Biobutanol is produced by the clostridial fermentation of starch and sugars, a process first commercialised in 1916 to produce acetone for munitions for the war effort but which was displaced in the 1950s by a cheaper petrochemical method.

BP has recently announced a collaboration with Dupont and British Sugar to manufacture biobutanol using conventional technology in the UK. BP provides a route for butanol into the transport fuel market and aims to blend butanol with petrol at its 1200 filling stations. In addition, in an attempt to curb C02 emissions, the EU has suggested that biofuels should account for 5.75% of total fuel sales by 2010. More recently the Commission has proposed that biofuels should make up 10% of total fuel sales by 2020 which represents a huge increase in the market for biofuels.

Within the UK, the Renewable Transport Fuel Obligation will, from April 2008, require fuel suppliers to ensure that an increasing percentage of their total fuel sales are made up of biofuels by 2020. The Government intends that biobutanol should count as a renewable transport fuel under the RTFO. The Government is due to consult on the details of the RTFO very shortly.

Green Biologics is partnering with EKB Technology, a specialist in innovative process technology, to develop an advanced fermentation process for butanol with improved yields and productivity and to demonstrate lower production costs for its Butafuel™ product.

Dr Green explained: “The major barrier to butanol production has been the high cost of the conventional starch fermentation process. Our expertise in microbial strain development, together with EKB’s innovative process technology and the use of non-edible food stocks, should lead to a step change in the economic viability of the manufacturing process - we are aiming for a two to three fold reduction in cost. We are effectively using our knowledge of enzymology, microbial physiology and fermentation to optimise and ‘re-commercialise’ the butanol fermentation process.”

Green Biologics is also expanding its staff numbers as it moves from a research to a development phase. Dr Green added: “New investment, together with significant grant funding, our collaboration with EKB Technologies, and the strengthening of our board with the appointment of Andrew Rickman as Chairman are exciting developments. Dr Rickman brings substantial management expertise and a hands-on approach that will be particularly valuable as we move to the next stage of demonstrating that we can produce our own Butafuel™ product.”

Dr Rickman said: “I am delighted to be joining Green Biologics at such an interesting time and I look forward to working with Edward and the rest of the management team to build on their achievements over the last three years. The Company is well-placed to demonstrate that it can produce a renewable and environmentally friendly transportation biofuel for the 21st century using cheaper, faster and cleaner production methods than conventional petrochemical processes.”

Margaret Henry | alfa
Further information:
http://www.greenbiologics.com
http://www.dti.gov.uk/innovation/technologystrategy

Further reports about: Biobutanol Biofuel Biologics Butanol Fermentation Rickman conventional

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>