Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Biologics awarded £560,000 to boost ‘Green’ Fuel Development

25.01.2007
An Oxfordshire biotechnology company is set to develop a new low-cost ‘next generation’ biofuel, with £250,000 funding from the Department of Trade and Industry’s Technology Programme and £310,000 from shareholder investors and business angels.

Green Biologics Ltd plans to develop a way of manufacturing biobutanol, identified as a superior ‘next generation’ biofuel for transport, which will slash the cost of production by up to a third. Biobutanol is currently used as a chemical feed for stock but high production costs have prevented it being widely used as a fuel.

Green Biologics has also announced the appointment of Dr Andrew Rickman OBE as non-executive Chairman. Dr Rickman founded Bookham Technology Inc, the world’s second largest fibre optics telecom component producer, and is actively involved with a number of growing technology companies.

Minister for Science and Innovation, Malcolm Wicks, said: “The development of biofuels is expected to play a major part in reducing transport emissions post 2020. We need companies like Green Biologics to work on developing the technology now needed to make new types of biofuel to help meet our future goals.

“Tackling climate change is a huge global challenge. We believe the UK must put its best efforts towards developing the new technologies we need to help cut carbon emissions. There’s also a great economic opportunity for UK businesses in investing in this area.”

Green Biologics Founder & CEO, Dr Edward Green, said: “Biofuels, such as biobutanol, are sustainable and environmentally friendly ‘next generation’ fuels that will extend, and ultimately replace, fossil fuels such as petrol and diesel. Although butanol is not currently used as a biofuel, it has a number of properties that make it extremely attractive. It is a renewable liquid fuel, produced from the fermentation of sugars, which can easily be integrated into the existing fuel infrastructure by blending with conventional fuels like petrol and diesel. Unlike bioethanol, it offers similar energy per litre to petrol, has low vapour pressure and is easy to store, handle and transport via pipelines.”

Biobutanol is produced by the clostridial fermentation of starch and sugars, a process first commercialised in 1916 to produce acetone for munitions for the war effort but which was displaced in the 1950s by a cheaper petrochemical method.

BP has recently announced a collaboration with Dupont and British Sugar to manufacture biobutanol using conventional technology in the UK. BP provides a route for butanol into the transport fuel market and aims to blend butanol with petrol at its 1200 filling stations. In addition, in an attempt to curb C02 emissions, the EU has suggested that biofuels should account for 5.75% of total fuel sales by 2010. More recently the Commission has proposed that biofuels should make up 10% of total fuel sales by 2020 which represents a huge increase in the market for biofuels.

Within the UK, the Renewable Transport Fuel Obligation will, from April 2008, require fuel suppliers to ensure that an increasing percentage of their total fuel sales are made up of biofuels by 2020. The Government intends that biobutanol should count as a renewable transport fuel under the RTFO. The Government is due to consult on the details of the RTFO very shortly.

Green Biologics is partnering with EKB Technology, a specialist in innovative process technology, to develop an advanced fermentation process for butanol with improved yields and productivity and to demonstrate lower production costs for its Butafuel™ product.

Dr Green explained: “The major barrier to butanol production has been the high cost of the conventional starch fermentation process. Our expertise in microbial strain development, together with EKB’s innovative process technology and the use of non-edible food stocks, should lead to a step change in the economic viability of the manufacturing process - we are aiming for a two to three fold reduction in cost. We are effectively using our knowledge of enzymology, microbial physiology and fermentation to optimise and ‘re-commercialise’ the butanol fermentation process.”

Green Biologics is also expanding its staff numbers as it moves from a research to a development phase. Dr Green added: “New investment, together with significant grant funding, our collaboration with EKB Technologies, and the strengthening of our board with the appointment of Andrew Rickman as Chairman are exciting developments. Dr Rickman brings substantial management expertise and a hands-on approach that will be particularly valuable as we move to the next stage of demonstrating that we can produce our own Butafuel™ product.”

Dr Rickman said: “I am delighted to be joining Green Biologics at such an interesting time and I look forward to working with Edward and the rest of the management team to build on their achievements over the last three years. The Company is well-placed to demonstrate that it can produce a renewable and environmentally friendly transportation biofuel for the 21st century using cheaper, faster and cleaner production methods than conventional petrochemical processes.”

Margaret Henry | alfa
Further information:
http://www.greenbiologics.com
http://www.dti.gov.uk/innovation/technologystrategy

Further reports about: Biobutanol Biofuel Biologics Butanol Fermentation Rickman conventional

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>