EMBL coordinates new Marie Curie Research Training Network “Chromatin Plasticity”

The long molecules of DNA that carry our genetic information are wrapped up together with proteins into a dense complex called chromatin. The structure of chromatin is dynamic and varies according to different phases of a cell’s life, a phenomenon that is called chromatin plasticity. Chromatin structure plays a critical role in regulating our genes and research in this area has the potential to aid the understanding of biological processes and disease, including aging and cancer.

The “Chromatin Plasticity” Network brings together 13 academic and industrial research groups from 9 countries around the world to reveal novel mechanisms in the regulation of chromatin structure. Combining complementary approaches from disciplines as different as structural biology, mouse genetics, immunology, bioinformatics and drug design, the research partners are aiming to develop new approaches and tools to achieve a thorough understanding of chromatin plasticity, as well as to identify potential therapeutic targets for cancer and heart disease.

In this project, great emphasis is placed on training PhD students and postdoctoral researchers through collaborative exchanges, practical courses and visits within the network, contributing to the development of the next generation of European researchers.

Media Contact

Anna-Lynn Wegener alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors