Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motor protein plays key role in connecting neurons

24.01.2007
A motor protein called myosin X runs the main road of a developing neuron, delivering to its tip a receptor that enables it to communicate with other neurons, scientists say.

In another piece of the puzzle of how neurons form connections, researchers have found myosin X travels a portion of a neuron's backbone called the actin filament, a sort of two-way highway in the cell's highest traffic area, says Dr. Wen-Cheng Xiong, developmental neurobiologist at the Medical College of Georgia.

Part of its cargo is DCC receptor which needs to move from the central nucleus where it's synthesized to the cell's periphery, Dr. Xiong and her colleagues report in the February issue of Nature Cell Biology and available online Jan. 21.

At the periphery, DCC interacts with netrin-1, a guidance cue for helping the arm-like extension of the cell, called the axon, grow in the right direction. Cells eventually communicate through synapses at the end of these cellular projections.

... more about:
»Axon »DCC »Myosin »Neuron »Xiong
"During early development, axons need to grow, they need to find a target, they need to decide how long to grow, which direction to grow. Eventually they will form a synapse," says Dr. Xiong, who is dissecting how neurons first connect with the goal of helping restore communication lost in spinal cord injuries and other disorders.

"Growth is precisely controlled during development," she says and errant growth can impair brain wiring or connectivity. "Myosin X gets the DCC receptor where it needs to be so it can interact with netrin-1."

Her previous studies, published in 2004 in Nature Neuroscience, showed that DCC binding to netrin-1, activates an enzyme, focal adhesion kinase, enabling developing cells to reorganize and intuitively know how to move. The process enables brain cells to reach out to each other and across the midline of the developing brain and spinal cord. When the kinase is deleted, the axon doesn't make the proper connections.

When researchers cut off myosin X's motor – which they believe happens in spinal cord injuries – axon outgrowth also was hindered.

"Myosin X plays a critical role in neurons during development," says Dr. Xiong. Different versions of the myosin family proteins are critical to essentially every cell including muscle cells and those that turnover and divide rapidly, such as skin and intestinal cells, and eggs or oocytes.

The rapidly moving protein is easily degraded and needs tight regulation. "If you don't want to have dramatic changes in your neuron structure, you don't want this molecule," she says.

In fact, she suspects the function of myosin X changes as the neuron develops. She has documented that in late stages of development, when the axon needs to stop growing, a shorter molecule, minus the motor, is expressed. "Probably after the neuron is developed, the major work of myosin is done. There are many cleavage sites in the middle and this typically large molecule can be cut down to a small molecule that actually inhibits axon growth function," Dr. Xiong says.

She suspects that negative function surfaces when the spinal cord is cut and plans to examine whether the protein is degraded in spinal cord injuries. "We already have evidence that if this protein degrades, most frequently without its motor domain, it becomes negative, inhibits DCC getting to the proper place and so axonal growth," Dr. Xiong says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Axon DCC Myosin Neuron Xiong

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>