Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassava mealybug control : parasitoid wasps hold the kairomone key

13.02.2002


The mealybug Phenacoccus herreni feeds on cassava plant sap, inducing shrivelling. It causes extensive damage in cassava growing areas in South America. However, it can be parasitized by two wasps, Acerophagus coccois and Aenasius vexans which act out a ritual to recognize and select the individuals they are going to parasitize. A wasp moves from one side to the other of a potential victim, investigating it by palpation with their antennae. Once this “drumming and turning” procedure completed, the wasps carry out their oviposition. And when the parasites emerge, the mealybugs die.



The IRD researchers, working jointly with the International Center for Tropical Agriculture (CIAT) in Colombia, have been focusing on chemical signals which enable the wasps to recognize their victims. They showed that a kairomone, an ester called O-caffeoylserine, acts as a cue in this recognition mechanism. It is secreted by the mealybug and is present on its body surface and can be recognized when the wasp comes into contact with it. The ester makes up 0.03 nmol/mg of the mealybug body weight.

O-caffeoylserine was isolated from a sample of mashed adult female mealybugs, the development stage at which the wasps prefer to lay their eggs. This is a new result for science. Although known in an artificially-synthesized form, this ester had never been obtained before from natural biological source material.


The researchers subsequently demonstrated that the O-caffeoylserine was indeed recognized by the wasps. This they did by studying their behaviour in response to small balls of cotton made to look like mealybug bodies, some soaked in an ordinary solvent, others imbibed with O-caffeoylserine. Neither Acerophagus coccois nor Aenasius vexans “recognized” the former, but they investigated those impregnated with the substance and sometimes tried to insert their ovipositor, the egg-laying organ.

These “decoys” also enabled the researchers to determine the concentration at which the ester is most attractive. Cotton balls were soaked with different concentrations of the product then presented to the wasps. The recognition ritual was observed only with concentrations of between 0.015 and 0.03 nmol/mg. Oviposition rarely took place and only when concentration was 0.03 nmol/mg.

What benefit then does O-caffeoylserine offer the mealybug? It appears to have a dual action. It could take part in cuticle sclerotization and tanning. Or it could have a protective role against bacteria and viruses. In any case, it would have a role which is essential.

Yet, perversely, the compound is paramount in attracting the parasitoid wasps to their mealybug victims. Many scientific studies have shown that a parasite is more effective if it has already been in contact with its host or a substance which this synthesizes. Thus, if parasitoid wasps were put artificially into contact with this kairomone, in insect collections for example, they would then be able to parasitize the mealybug more rapidly. The discovery of this substance is therefore an important step towards developing a more effective biological control method against this serious pest.

(1) a chemical compound beneficial for the insect which receives the “message” (in this case the parasitoid wasp) and harmful for the one which emits it (the mealybug).

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>