Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassava mealybug control : parasitoid wasps hold the kairomone key

13.02.2002


The mealybug Phenacoccus herreni feeds on cassava plant sap, inducing shrivelling. It causes extensive damage in cassava growing areas in South America. However, it can be parasitized by two wasps, Acerophagus coccois and Aenasius vexans which act out a ritual to recognize and select the individuals they are going to parasitize. A wasp moves from one side to the other of a potential victim, investigating it by palpation with their antennae. Once this “drumming and turning” procedure completed, the wasps carry out their oviposition. And when the parasites emerge, the mealybugs die.



The IRD researchers, working jointly with the International Center for Tropical Agriculture (CIAT) in Colombia, have been focusing on chemical signals which enable the wasps to recognize their victims. They showed that a kairomone, an ester called O-caffeoylserine, acts as a cue in this recognition mechanism. It is secreted by the mealybug and is present on its body surface and can be recognized when the wasp comes into contact with it. The ester makes up 0.03 nmol/mg of the mealybug body weight.

O-caffeoylserine was isolated from a sample of mashed adult female mealybugs, the development stage at which the wasps prefer to lay their eggs. This is a new result for science. Although known in an artificially-synthesized form, this ester had never been obtained before from natural biological source material.


The researchers subsequently demonstrated that the O-caffeoylserine was indeed recognized by the wasps. This they did by studying their behaviour in response to small balls of cotton made to look like mealybug bodies, some soaked in an ordinary solvent, others imbibed with O-caffeoylserine. Neither Acerophagus coccois nor Aenasius vexans “recognized” the former, but they investigated those impregnated with the substance and sometimes tried to insert their ovipositor, the egg-laying organ.

These “decoys” also enabled the researchers to determine the concentration at which the ester is most attractive. Cotton balls were soaked with different concentrations of the product then presented to the wasps. The recognition ritual was observed only with concentrations of between 0.015 and 0.03 nmol/mg. Oviposition rarely took place and only when concentration was 0.03 nmol/mg.

What benefit then does O-caffeoylserine offer the mealybug? It appears to have a dual action. It could take part in cuticle sclerotization and tanning. Or it could have a protective role against bacteria and viruses. In any case, it would have a role which is essential.

Yet, perversely, the compound is paramount in attracting the parasitoid wasps to their mealybug victims. Many scientific studies have shown that a parasite is more effective if it has already been in contact with its host or a substance which this synthesizes. Thus, if parasitoid wasps were put artificially into contact with this kairomone, in insect collections for example, they would then be able to parasitize the mealybug more rapidly. The discovery of this substance is therefore an important step towards developing a more effective biological control method against this serious pest.

(1) a chemical compound beneficial for the insect which receives the “message” (in this case the parasitoid wasp) and harmful for the one which emits it (the mealybug).

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>