Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassava mealybug control : parasitoid wasps hold the kairomone key

13.02.2002


The mealybug Phenacoccus herreni feeds on cassava plant sap, inducing shrivelling. It causes extensive damage in cassava growing areas in South America. However, it can be parasitized by two wasps, Acerophagus coccois and Aenasius vexans which act out a ritual to recognize and select the individuals they are going to parasitize. A wasp moves from one side to the other of a potential victim, investigating it by palpation with their antennae. Once this “drumming and turning” procedure completed, the wasps carry out their oviposition. And when the parasites emerge, the mealybugs die.



The IRD researchers, working jointly with the International Center for Tropical Agriculture (CIAT) in Colombia, have been focusing on chemical signals which enable the wasps to recognize their victims. They showed that a kairomone, an ester called O-caffeoylserine, acts as a cue in this recognition mechanism. It is secreted by the mealybug and is present on its body surface and can be recognized when the wasp comes into contact with it. The ester makes up 0.03 nmol/mg of the mealybug body weight.

O-caffeoylserine was isolated from a sample of mashed adult female mealybugs, the development stage at which the wasps prefer to lay their eggs. This is a new result for science. Although known in an artificially-synthesized form, this ester had never been obtained before from natural biological source material.


The researchers subsequently demonstrated that the O-caffeoylserine was indeed recognized by the wasps. This they did by studying their behaviour in response to small balls of cotton made to look like mealybug bodies, some soaked in an ordinary solvent, others imbibed with O-caffeoylserine. Neither Acerophagus coccois nor Aenasius vexans “recognized” the former, but they investigated those impregnated with the substance and sometimes tried to insert their ovipositor, the egg-laying organ.

These “decoys” also enabled the researchers to determine the concentration at which the ester is most attractive. Cotton balls were soaked with different concentrations of the product then presented to the wasps. The recognition ritual was observed only with concentrations of between 0.015 and 0.03 nmol/mg. Oviposition rarely took place and only when concentration was 0.03 nmol/mg.

What benefit then does O-caffeoylserine offer the mealybug? It appears to have a dual action. It could take part in cuticle sclerotization and tanning. Or it could have a protective role against bacteria and viruses. In any case, it would have a role which is essential.

Yet, perversely, the compound is paramount in attracting the parasitoid wasps to their mealybug victims. Many scientific studies have shown that a parasite is more effective if it has already been in contact with its host or a substance which this synthesizes. Thus, if parasitoid wasps were put artificially into contact with this kairomone, in insect collections for example, they would then be able to parasitize the mealybug more rapidly. The discovery of this substance is therefore an important step towards developing a more effective biological control method against this serious pest.

(1) a chemical compound beneficial for the insect which receives the “message” (in this case the parasitoid wasp) and harmful for the one which emits it (the mealybug).

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>