Stainless steel corrosion mystery solved by UK researchers

From cutlery and cooking pans to the inside of a Formula 1 car engine or a huge chemical process plant, stainless steel is all around us. It’s not meant to corrode, but it can, and when it does the results can be disastrous, whether it’s a hole in your dishwasher or a failed industrial plant.

Unlike rusting, stainless steel corrosion is highly localised and apparently random. Tiny holes called pits can drill through a substantial thickness of steel in a relatively short time. The pits can cause leaks or act as points from which cracks initiate, similar to the type of defect caused by scoring glass before breaking it, and can cause some of the most catastrophic industrial accidents known.

Why stainless steel fails has long been a mystery, but today with the publication of research in the journal Nature*1, British researchers claim to have solved it.

‘Stainlessness’ is created by alloying iron with chromium. As the steel ingot cools after it has been made, tiny sulphur-rich impurity particles, about 10 millionths of a metre in diameter, solidify at a lower temperature than the steel, remaining molten for a time after the metal has solidified.

Using an advanced new microscope*2 the team from Imperial College and University College London found a region around these impurity particles that has significantly less chromium than the rest of the steel. During cooling of the steel the impurity particles ‘suck’ chromium out of the steel around them, creating a tiny nutshell of steel that is not stainless.

Corrosion of this layer, just one 10 millionth of a metre thick, is the virus that triggers the main attack say scientists Dr Mary Ryan of Imperial College and Professor David Williams of University College London.

“Most of your household appliances contain stainless steel,” said Dr Ryan of the department of materials at Imperial College.

“It’s quick to clean and has an attractive shiny appearance – this cleanability also makes it the material of choice for applications requiring sterile surfaces such as surgical instruments or plants for producing pharmaceuticals.

“Overall it’s used in countless engineering applications and, in general, it has very good resistance and performs well but it is susceptible to this devastating pitting corrosion. Now we’ve worked out the sequence of events that cause it, we know what causes this Achilles heel, and we can use this information to work out how to fix it,” she said.

The authors suggest that altering the conditions under which it is made could cure the problem without using very expensive low sulphur steels. Another alternative is to use heat treatments after the steel is processed, causing chromium to replenish those sites it has been depleted from, they suggest.

Stainless steel was first made in Sheffield, UK, in 1913.

The research was supported by the Engineering and Physical Sciences Research Council (EPSRC).

Media Contact

Tom Miller alphagalileo

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors