Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First atherosclerosis vaccine: time for the count-down

Preliminary human safety trials involving human patients could start next year, EVGN scientist says.

The first vaccine against atherosclerosis is not far away in the future, according to Jan Nilsson, professor of Experimental Cardiology at Lunds Universitet in Malmö (Sweden) and EVGN member. Human clinical trials are likely to begin at the end of next year: they will be aimed at verifying the safety of a preparation, still under investigation in a laboratory model, made of antibodies obtained against selected fragments of oxidized Low Density Lipoproteins, or oxLDLs. LDLs are the major component of the “bad cholesterol”: their accumulation in the arterial wall causes inflammation and is a key factor in the onset of atherosclerosis.

The ability of oxidized LDL to trigger an immune response in the body was recognized a decade ago. Studies revealed that these particles can induce an autoimmune response: a response of the body against itself. But they also revealed that the immunization with oxLDL particles reduces the development of atherosclerosis hampering the deposition of atherosclerotic plaques. “Early as they were, these data prompted the scientists to consider vaccination as a feasible option not only for infectious diseases but also for atherosclerosis. And recent evidence confirming the involvement of the immune system in cardiovascular disease has strengthened the idea” says Nilsson, who has a long standing experience in studying atherosclerosis and the immune system.

Setting up a vaccine is not easy: the mechanism of action of the compounds is often unknown, and the reactions in a human being could be different from those observed in a laboratory model. Besides, not all the parts (or epitopes) of an immunogenic molecule trigger the same immune response. “We knew that oxidation alters the external structure of LDLs, but didn’t know which epitope was the most effective. So we tested several fragments (peptides) derived from the protein that stick on the surface of LDLs (apoB100), alone and in combination, to determine their efficacy on atherosclerosis”. What the scientists found was that a single fragment, and not the mix, exerted the strongest effect on the inflammation that surrounds the atherosclerotic plaques. “The injection of this fragment (a procedure called active immunization) triggered the production of antibodies, which determined the reduction of the atherosclerotic lesions up to 70% and the stabilization/regression of the plaques”.

... more about:
»LDL »Nilsson »Vaccine »atherosclerosis »oxLDL

These results induced the scientists to speculate that the direct administration (passive immunization) of an antibody against ApoB100 could be effective as well. So Nilsson and his team developed human antibodies with high affinity for apoB100 fragments, and proved that they can significantly reduce the atherosclerosis in a mouse model.

But what could happen in a human being? The mechanism of action of these antibodies is still unclear, and uncertainties remain on the activation of unwanted inflammatory responses. “We are aware that some points still need to be clarified. However, we expect to obtain the answers within a year, before moving into man” admits Nilsson.

Today, the most common treatment for atherosclerosis are statins. Unfortunately, these drugs do not directly affect oxLDLs, and a high percentage of patients who are treated with statins may still undergo a heart attack or stroke. The research strategy pursued by Nilsson and colleagues could therefore benefit high-risk individuals for whom the conventional treatments do not provide adequate protection.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:

Further reports about: LDL Nilsson Vaccine atherosclerosis oxLDL

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>