Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atherosclerosis vaccine: time for the count-down

13.12.2006
Preliminary human safety trials involving human patients could start next year, EVGN scientist says.

The first vaccine against atherosclerosis is not far away in the future, according to Jan Nilsson, professor of Experimental Cardiology at Lunds Universitet in Malmö (Sweden) and EVGN member. Human clinical trials are likely to begin at the end of next year: they will be aimed at verifying the safety of a preparation, still under investigation in a laboratory model, made of antibodies obtained against selected fragments of oxidized Low Density Lipoproteins, or oxLDLs. LDLs are the major component of the “bad cholesterol”: their accumulation in the arterial wall causes inflammation and is a key factor in the onset of atherosclerosis.

The ability of oxidized LDL to trigger an immune response in the body was recognized a decade ago. Studies revealed that these particles can induce an autoimmune response: a response of the body against itself. But they also revealed that the immunization with oxLDL particles reduces the development of atherosclerosis hampering the deposition of atherosclerotic plaques. “Early as they were, these data prompted the scientists to consider vaccination as a feasible option not only for infectious diseases but also for atherosclerosis. And recent evidence confirming the involvement of the immune system in cardiovascular disease has strengthened the idea” says Nilsson, who has a long standing experience in studying atherosclerosis and the immune system.

Setting up a vaccine is not easy: the mechanism of action of the compounds is often unknown, and the reactions in a human being could be different from those observed in a laboratory model. Besides, not all the parts (or epitopes) of an immunogenic molecule trigger the same immune response. “We knew that oxidation alters the external structure of LDLs, but didn’t know which epitope was the most effective. So we tested several fragments (peptides) derived from the protein that stick on the surface of LDLs (apoB100), alone and in combination, to determine their efficacy on atherosclerosis”. What the scientists found was that a single fragment, and not the mix, exerted the strongest effect on the inflammation that surrounds the atherosclerotic plaques. “The injection of this fragment (a procedure called active immunization) triggered the production of antibodies, which determined the reduction of the atherosclerotic lesions up to 70% and the stabilization/regression of the plaques”.

... more about:
»LDL »Nilsson »Vaccine »atherosclerosis »oxLDL

These results induced the scientists to speculate that the direct administration (passive immunization) of an antibody against ApoB100 could be effective as well. So Nilsson and his team developed human antibodies with high affinity for apoB100 fragments, and proved that they can significantly reduce the atherosclerosis in a mouse model.

But what could happen in a human being? The mechanism of action of these antibodies is still unclear, and uncertainties remain on the activation of unwanted inflammatory responses. “We are aware that some points still need to be clarified. However, we expect to obtain the answers within a year, before moving into man” admits Nilsson.

Today, the most common treatment for atherosclerosis are statins. Unfortunately, these drugs do not directly affect oxLDLs, and a high percentage of patients who are treated with statins may still undergo a heart attack or stroke. The research strategy pursued by Nilsson and colleagues could therefore benefit high-risk individuals for whom the conventional treatments do not provide adequate protection.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: LDL Nilsson Vaccine atherosclerosis oxLDL

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>