Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atherosclerosis vaccine: time for the count-down

13.12.2006
Preliminary human safety trials involving human patients could start next year, EVGN scientist says.

The first vaccine against atherosclerosis is not far away in the future, according to Jan Nilsson, professor of Experimental Cardiology at Lunds Universitet in Malmö (Sweden) and EVGN member. Human clinical trials are likely to begin at the end of next year: they will be aimed at verifying the safety of a preparation, still under investigation in a laboratory model, made of antibodies obtained against selected fragments of oxidized Low Density Lipoproteins, or oxLDLs. LDLs are the major component of the “bad cholesterol”: their accumulation in the arterial wall causes inflammation and is a key factor in the onset of atherosclerosis.

The ability of oxidized LDL to trigger an immune response in the body was recognized a decade ago. Studies revealed that these particles can induce an autoimmune response: a response of the body against itself. But they also revealed that the immunization with oxLDL particles reduces the development of atherosclerosis hampering the deposition of atherosclerotic plaques. “Early as they were, these data prompted the scientists to consider vaccination as a feasible option not only for infectious diseases but also for atherosclerosis. And recent evidence confirming the involvement of the immune system in cardiovascular disease has strengthened the idea” says Nilsson, who has a long standing experience in studying atherosclerosis and the immune system.

Setting up a vaccine is not easy: the mechanism of action of the compounds is often unknown, and the reactions in a human being could be different from those observed in a laboratory model. Besides, not all the parts (or epitopes) of an immunogenic molecule trigger the same immune response. “We knew that oxidation alters the external structure of LDLs, but didn’t know which epitope was the most effective. So we tested several fragments (peptides) derived from the protein that stick on the surface of LDLs (apoB100), alone and in combination, to determine their efficacy on atherosclerosis”. What the scientists found was that a single fragment, and not the mix, exerted the strongest effect on the inflammation that surrounds the atherosclerotic plaques. “The injection of this fragment (a procedure called active immunization) triggered the production of antibodies, which determined the reduction of the atherosclerotic lesions up to 70% and the stabilization/regression of the plaques”.

... more about:
»LDL »Nilsson »Vaccine »atherosclerosis »oxLDL

These results induced the scientists to speculate that the direct administration (passive immunization) of an antibody against ApoB100 could be effective as well. So Nilsson and his team developed human antibodies with high affinity for apoB100 fragments, and proved that they can significantly reduce the atherosclerosis in a mouse model.

But what could happen in a human being? The mechanism of action of these antibodies is still unclear, and uncertainties remain on the activation of unwanted inflammatory responses. “We are aware that some points still need to be clarified. However, we expect to obtain the answers within a year, before moving into man” admits Nilsson.

Today, the most common treatment for atherosclerosis are statins. Unfortunately, these drugs do not directly affect oxLDLs, and a high percentage of patients who are treated with statins may still undergo a heart attack or stroke. The research strategy pursued by Nilsson and colleagues could therefore benefit high-risk individuals for whom the conventional treatments do not provide adequate protection.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: LDL Nilsson Vaccine atherosclerosis oxLDL

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>