Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light over the role of the hormone progesterone in breast cancer

13.12.2006
Progesterone is a female sex hormone known to regulate the growth of normal breast tissue while also seeming to be involved in breast cancer. Its exact role in the carcinogenic process, however, is still unclear.

But now, in work about to be published in the "Journal of Cellular Biochemistry", a team of Portuguese scientists shows that progesterone seems to sustain the formation of blood vessels, which, by supplying nutrients to the tumour cells, are vital for breast cancer progression. This finding has important implications not only for a better understanding of the disease, but also for present and future therapeutic approaches against it.

Breast cancer is the second most common cancer in the world with approximately 1 million of new cases every year, even if the disease tends to have a relatively favourable prognosis. One of the reasons for this is the fact that a majority of breast cancers are hormone-dependent, and treatments blocking these hormones (and consequently cancer progression) can be extremely effective, sometimes even more than chemotherapy.

In fact, ovarian hormones known to play an important role in the development of normal breast tissue - such as oestrogen and progesterone - also seem to be involved in breast cancer development, with 70 to 80% of primary breast tumours showing oestrogen and/or progesterone receptors in their cells. These receptors act as on-off switch; when the right molecule (in this case oestrogen or progesterone) binds to its specific receptor, the switch is turned on, leading, in the case of breast cancer, to disease progression. In result, anti-hormonal therapy (especially anti-oestrogen therapy), which blocks the hormones’ action, is widely used against the disease with good results.

But if oestrogen has been clearly associated with cancer growth, the role of progesterone in breast cancer (and consequently the importance and the specific mechanism of progesterone-blocking therapy) is much less clear.

But now Raquel Soares, Susana Guerreiro and Mónica Botelho from the University of Porto in Portugal found that breast cancer cells that respond to progesterone, produce, when exposed to the hormone, Platelet-derived growth factor A (PDGF-A) a protein known to stimulate cell growth and division. Furhermore, PDGF-A did not seem to act directly on the tumour cells, but was instead released into the space outside of the cell suggesting an effect on neighbouring cells.

Interaction between tumour cells and their environment is crucial for cancer progression and in fact PDGF-A has been suggested to be involved in the formation of new blood vessels (also called angiogenesis). Angiogenesis is a process crucial for cancer sustainability since without new blood vessels around the tumour site to supply nutrients, cancerous cells will starve and die. To test if PDGF-A could be in fact involved in the formation of blood vessels around breast cancer tumour sites, Soares and colleagues decided to analyse smooth muscle cells, which are known to be involved in this process while also have been described as having receptors for PDGF-A. And in fact, PDGF-A (and so progesterone) was found to increase the growth and viability of smooth muscle cells confirming a role to both these molecules supporting angiogenesis.

What Soares and colleagues’ work strongly suggest is that progesterone stimulates cancer development by helping the formation and stability of blood vessels formed adjacent to the tumour cells. These new blood vessels are, not only crucial to the supply of nutrients to cancer cells, but also important “exits” for these cells to spread throughout the body. These results show how current anti-progesterone therapies block cancer progression by targeting not only progesterone-dependent cancer cells but also the formation of new blood vessels, and emphasise the importance of continue to pursue anti-progesterone therapeutics.

Piece researched and written by:
Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.linacre.ox.ac.uk
http://www3.interscience.wiley.com/cgi-bin/abstract/112737747/ABSTRACT

Further reports about: PDGF-A blood vessel formation hormone oestrogen progesterone progression receptor

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>