Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New light over the role of the hormone progesterone in breast cancer

Progesterone is a female sex hormone known to regulate the growth of normal breast tissue while also seeming to be involved in breast cancer. Its exact role in the carcinogenic process, however, is still unclear.

But now, in work about to be published in the "Journal of Cellular Biochemistry", a team of Portuguese scientists shows that progesterone seems to sustain the formation of blood vessels, which, by supplying nutrients to the tumour cells, are vital for breast cancer progression. This finding has important implications not only for a better understanding of the disease, but also for present and future therapeutic approaches against it.

Breast cancer is the second most common cancer in the world with approximately 1 million of new cases every year, even if the disease tends to have a relatively favourable prognosis. One of the reasons for this is the fact that a majority of breast cancers are hormone-dependent, and treatments blocking these hormones (and consequently cancer progression) can be extremely effective, sometimes even more than chemotherapy.

In fact, ovarian hormones known to play an important role in the development of normal breast tissue - such as oestrogen and progesterone - also seem to be involved in breast cancer development, with 70 to 80% of primary breast tumours showing oestrogen and/or progesterone receptors in their cells. These receptors act as on-off switch; when the right molecule (in this case oestrogen or progesterone) binds to its specific receptor, the switch is turned on, leading, in the case of breast cancer, to disease progression. In result, anti-hormonal therapy (especially anti-oestrogen therapy), which blocks the hormones’ action, is widely used against the disease with good results.

But if oestrogen has been clearly associated with cancer growth, the role of progesterone in breast cancer (and consequently the importance and the specific mechanism of progesterone-blocking therapy) is much less clear.

But now Raquel Soares, Susana Guerreiro and Mónica Botelho from the University of Porto in Portugal found that breast cancer cells that respond to progesterone, produce, when exposed to the hormone, Platelet-derived growth factor A (PDGF-A) a protein known to stimulate cell growth and division. Furhermore, PDGF-A did not seem to act directly on the tumour cells, but was instead released into the space outside of the cell suggesting an effect on neighbouring cells.

Interaction between tumour cells and their environment is crucial for cancer progression and in fact PDGF-A has been suggested to be involved in the formation of new blood vessels (also called angiogenesis). Angiogenesis is a process crucial for cancer sustainability since without new blood vessels around the tumour site to supply nutrients, cancerous cells will starve and die. To test if PDGF-A could be in fact involved in the formation of blood vessels around breast cancer tumour sites, Soares and colleagues decided to analyse smooth muscle cells, which are known to be involved in this process while also have been described as having receptors for PDGF-A. And in fact, PDGF-A (and so progesterone) was found to increase the growth and viability of smooth muscle cells confirming a role to both these molecules supporting angiogenesis.

What Soares and colleagues’ work strongly suggest is that progesterone stimulates cancer development by helping the formation and stability of blood vessels formed adjacent to the tumour cells. These new blood vessels are, not only crucial to the supply of nutrients to cancer cells, but also important “exits” for these cells to spread throughout the body. These results show how current anti-progesterone therapies block cancer progression by targeting not only progesterone-dependent cancer cells but also the formation of new blood vessels, and emphasise the importance of continue to pursue anti-progesterone therapeutics.

Piece researched and written by:
Catarina Amorim (

Catarina Amorim | alfa
Further information:

Further reports about: PDGF-A blood vessel formation hormone oestrogen progesterone progression receptor

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>