Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technological platforms boost European cardiovascular research

13.12.2006
Proteomics, bioinformatics and Zebrafish are the novel tools set up by the European Vascular Genomics Network (EVGN).

Advanced technology is crucial to today’s biomedical research. But it is expensive and it requires specific expertise, which is expensive too. Then sharing becomes a must. And it guarantees a high level of cooperation among research groups throughout Europe. In 2006, the European Vascular Genomics Network (EVGN), a Network of Excellence funded by the European Union within its 6th Framework Programme, has launched three platforms, all of them representing cutting edge tools in the field of cardiovascular science and aimed at strengthening and improving the research effectiveness of the Network. The platforms were presented during the Third EVGN annual Conference (Toulouse, 11-14 December 2006).

The Zebrafish platform (Zebrafish, the fish Danio rerio, is an extremely versatile model organism in modern molecular biology) intends to provide EVGN scientists with a direct access to the Zebrafish model system for in vivo studies of cardiovascular development and disease. The Zebrafish platform is based at IFOM, the FIRC Institute of Molecular Oncology (Milan, Italy) and it is led by EVGN scientist Marina Mione.

The bioinformatics platform will provide EVGN researchers with a comprehensive set of software and web tools for storing, accessing, analyzing and elaborating the huge amount of data that comes from today’s high throughput technologies (in particular, gene and protein expression data). The platform is managed by Anton Horrevoets of the Academisch Medisch Centrum (University of Amsterdam).

Last but not least, an innovative proteomic platform has been launched, to perform advanced studies on structure and function of the proteins involved in the process of formation and development of cardiovascular disease. The promise of proteomics in this field is to carry out large scale-studies of gene expression at the protein level, providing the basis for a detailed understanding of pathophysiological mechanisms and leading to the discovery of potential targets for drug development. The EVGN proteomic platform is managed by Manuel Mayr, of the St George's Hospital Medical School (London, UK).

“EVGN platforms – explains EVGN scientific coordinator Alain Tedgui, of Inserm, Paris – represent essential tools to our network. These technologies are necessary for today’s research, but they are extremely expensive, and would not be affordable for individual institutes. Also, every platform requires specific and advanced expertise, and this is expensive too. Sharing human and technological resources becomes then crucial. Also, having common platforms guarantees that we all work with experts with both highly specific expertise and a solid background in cardiovascular disease.” More than being just core facilities, the EVGN platforms base their work on collaborative projects. “The scientists who work at the platforms – adds Tedgui – are not technicians, they are indeed involved in collaborative projects with several EVGN partners.”

The future of EVGN

EVGN, which was launched in 2004, will be active until the end of 2008. But its legacy will be taken on by new specific projects to be activated during the 7th Framework Programme. “What we have done here, with EVGN, was to lay the foundations of European vascular disease with a highly collaborative approach. Now we need to go on. Some of the area that will be covered by the new Programme – says Tedgui – will directly interest EVGN members. For example inflammatory and vascular remodelling, or stem cells in ischemic disease. Several groups and leaders of EVGN will join together and propose innovative actions in these fields of research.”

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Third EVGN Annual Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.ifom-ieo-campus.it
http://www.evgn.org

Further reports about: Cardiovascular EVGN expensive vascular disease

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>