Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology makes clinical research more precise

12.12.2006
The Flanders Interuniversity Institute for Biotechnology (VIB) and AlgoNomics have joined forces to develop a technology that verifies whether certain proteins induce an immune response in humans.

The collaboration between VIB and AlgoNomics has yielded a biological test that supplements the current computer simulations. The additional data enable a more precise determination of the immune response. This knowledge is important for the development of new medicines, because it indicates that a new therapeutic substance is ready to be tested on humans.

T-cells, essential agents of our immune system

The immune system is our defense against foreign intruders, such as viruses and bacteria. It reacts against everything that it recognizes as ‘foreign to the body’ - but, therefore, it might also react against certain substances that researchers want to develop into therapeutic drugs. An important trigger of the immune system’s response is the activation of T-cells, a particular type of white blood cell. The T-cells produce cytokines, substances that signal the other cells of the immune system to take action.

Developing therapeutic proteins

In the development of new therapeutic proteins, it is extremely important to know whether or not the proteins induce an immune response. When you suspect that a certain substance has a therapeutic effect, it must not be destroyed by your immune system, or induce other immune responses, because you want the substance to be able to do its beneficial work.

On the other hand, when developing a vaccine, you do want it to induce an immune response - that is, a reaction that does not make you sick but that protects you against future contact with the disease that the vaccine combats.

Epibase, an ‘in silico’ test

For quite some time now, AlgoNomics has been offering Epibase to companies that are developing therapeutic proteins and that want to know whether their product induces an immune response. On the basis of a sophisticated computer program, Epibase can predict whether or not a particular protein will trigger the activation of T-cells. The technology can do this for all proteins, whether they originate from humans or from another biological source, such as a virus or a cancer cell. The marvelous thing about Epibase is that it can also do this for proteins for which little or no experimental data are available. Other technologies require at least a minimum of data to predict whether a substance induces an immune response or not. Epibase has already been used for the development of a variety of therapeutic proteins and is currently the biotech industry standard. In contrast to other ‘in silico’ platforms, Epibase provides greater precision and can predict immune response in Asian and South American populations as well.

A more complete test

Upon the request of AlgoNomics, VIB scientists connected with Ghent University, under the direction of Johan Grooten, have designed a biological test that supplements the Epibase assessments with certain experimental data. The test exposes blood cells - which include T-cells - to the proteins under study. If the proteins being investigated induce an immune response, the T-cells will become active and produce cytokines. In this new test, the activity of the T-cells is measured by determining the quantity of cytokines that are produced.

The new test allows scientists to examine a biological system to see whether a substance induces an immune response. For the step to a clinical phase (and thus tests on humans), the experimental and ‘in silico’ data are both needed to assess the risk of inducing an immune response. Thanks to the collaboration between VIB and AlgoNomics, it is now possible to generate all the data by means of a single test - an artful combination of ‘in silico’ and ‘in vitro’ work.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: AlgoNomics Epibase T-Cells immune immune response induce silico’ therapeutic

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>