Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology makes clinical research more precise

12.12.2006
The Flanders Interuniversity Institute for Biotechnology (VIB) and AlgoNomics have joined forces to develop a technology that verifies whether certain proteins induce an immune response in humans.

The collaboration between VIB and AlgoNomics has yielded a biological test that supplements the current computer simulations. The additional data enable a more precise determination of the immune response. This knowledge is important for the development of new medicines, because it indicates that a new therapeutic substance is ready to be tested on humans.

T-cells, essential agents of our immune system

The immune system is our defense against foreign intruders, such as viruses and bacteria. It reacts against everything that it recognizes as ‘foreign to the body’ - but, therefore, it might also react against certain substances that researchers want to develop into therapeutic drugs. An important trigger of the immune system’s response is the activation of T-cells, a particular type of white blood cell. The T-cells produce cytokines, substances that signal the other cells of the immune system to take action.

Developing therapeutic proteins

In the development of new therapeutic proteins, it is extremely important to know whether or not the proteins induce an immune response. When you suspect that a certain substance has a therapeutic effect, it must not be destroyed by your immune system, or induce other immune responses, because you want the substance to be able to do its beneficial work.

On the other hand, when developing a vaccine, you do want it to induce an immune response - that is, a reaction that does not make you sick but that protects you against future contact with the disease that the vaccine combats.

Epibase, an ‘in silico’ test

For quite some time now, AlgoNomics has been offering Epibase to companies that are developing therapeutic proteins and that want to know whether their product induces an immune response. On the basis of a sophisticated computer program, Epibase can predict whether or not a particular protein will trigger the activation of T-cells. The technology can do this for all proteins, whether they originate from humans or from another biological source, such as a virus or a cancer cell. The marvelous thing about Epibase is that it can also do this for proteins for which little or no experimental data are available. Other technologies require at least a minimum of data to predict whether a substance induces an immune response or not. Epibase has already been used for the development of a variety of therapeutic proteins and is currently the biotech industry standard. In contrast to other ‘in silico’ platforms, Epibase provides greater precision and can predict immune response in Asian and South American populations as well.

A more complete test

Upon the request of AlgoNomics, VIB scientists connected with Ghent University, under the direction of Johan Grooten, have designed a biological test that supplements the Epibase assessments with certain experimental data. The test exposes blood cells - which include T-cells - to the proteins under study. If the proteins being investigated induce an immune response, the T-cells will become active and produce cytokines. In this new test, the activity of the T-cells is measured by determining the quantity of cytokines that are produced.

The new test allows scientists to examine a biological system to see whether a substance induces an immune response. For the step to a clinical phase (and thus tests on humans), the experimental and ‘in silico’ data are both needed to assess the risk of inducing an immune response. Thanks to the collaboration between VIB and AlgoNomics, it is now possible to generate all the data by means of a single test - an artful combination of ‘in silico’ and ‘in vitro’ work.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: AlgoNomics Epibase T-Cells immune immune response induce silico’ therapeutic

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>