Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas on your mind

12.12.2006
Scientists at the University of Leicester are to gain a greater insight into the workings of the human mind…through the study of a snail’s brain.

The research may lead to a greater understanding of the development of the nervous system and the processes that control nerve cell regeneration following injury. Researchers received funding of £322,299 from the BBSRC (Biotechnology and Biological Sciences Research Council) for the study.

The research project, led by Dr Volko Straub, a Research Councils UK fellow in the University’s Department of Cell Physiology and Pharmacology, may also provide new insights why nitric oxide plays such an important role in many forms of learning.

Dr Straub commented: “The gas nitric oxide has two faces. It can be highly toxic and kill. However, it is also found naturally in the brain where it is used by nerve cells to communicate with each other. So, whilst it can be poisonous, the body also uses it beneficially as an internal signal.”

“During brain development, nitric oxide can promote the growth of nerve cells and the formation of connections between nerve cells. Learning also triggers the formation of new connections between nerve cells and in many cases requires nitric oxide.”

Despite the recognition of the importance of nitric oxide for the formation of nerve cell connections, scientists know little about the mechanisms. The Leicester BBSRC-funded project will study directly the relationship between the effects of nitric oxide on the growth of nerve cells and the formation of nerve cell connections.

Dr Straub explained: “Studying these processes in higher animals is complicated by the complexity of their nervous system. Fortunately, evolution has been very conservative. So, we decided to use the nervous system of the common pond snail, which is considerably less complex than the nervous system of higher animals such as mice, as a model system.

“In the snail, individual nerve cells are relatively large and easily identifiable. They are accessible for experimental manipulations. Snail neurons can also be isolated from the nervous system and maintained in cell culture, where they grow and form functional connections. Importantly, the basic processes and factors that control the growth of nerve cells and the formation of functional connections are highly conserved in all animals.”

The results of the project will show what effects nitric oxide has on nerve cell growth and on the formation of functional connections. In a broader context, the results will contribute to a better understanding of the factors that control nerve cell growth and the formation of functional connections.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

Further reports about: Oxide connections nerve cells nervous system nitric

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>