Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Micro molecules contribute mightily to heart problem

Tiny bits of RNA — a chemical cousin of DNA — play a large role in causing enlargement of the heart, which is a major risk factor for heart failure and sudden death, researchers at UT Southwestern Medical Center have discovered.

Their findings, available online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences, are part of a fast-growing research field revealing the wide importance of so-called micro ribonucleic acids, or miRNAs, in numerous bodily functions, including cancer, cell death and cell growth.

“They haven’t been studied for very long,” said Dr. Eric Olson, chairman of molecular biology and senior author of the study. “These particular micro RNAs aren’t just markers of heart failure. They’re actually able to cause the disease, at least in mice.

“This is the first evidence for the involvement of micro RNAs in adult heart disease,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.

Eventually, manipulating micro RNAs might be a way to treat heart disease, the researchers reported. A micro RNA can be blocked with a short complementary fragment of genetic material engineered to attach to RNA and neutralize it.

... more about:
»Micro »Molecular »RNA »miR-195

The process of identifying the damage-causing micro RNAs started with the researchers investigating whether any micro RNAs were present at abnormal levels in diseased, enlarged hearts of mice. Sixteen of the 28 such micro RNAs identified were focused on because they were similar to those found in humans and rats. The researchers found that some of the same micro RNAs are present at abnormal concentrations in diseased human hearts, suggesting that these micro RNAs also play a role in human heart disease.

Dr. Olson’s team eventually zeroed in on one micro RNA, called miR-195, which had both visible and functional effects on the heart. These effects were established by creating genetically modified mice that had higher-than-normal amounts of miR-195. Those mice had misshapen hearts and decreased pumping power.

In addition, adding miR-195 to heart cells cultured in dishes made the cells larger and more disorganized.

Because some of the micro RNAs studied are known to be involved in other cell processes, the researchers speculate that these particular RNAs play a role in cell division or growth of heart muscle cells. Further research is needed to determine the mechanism by which miR-195 causes the heart to enlarge, Dr. Olson said.

Other UT Southwestern researchers involved in the study were Dr. Eva van Rooij, postdoctoral researcher in molecular biology and the study’s lead author; Lillian Sutherland, research scientist in molecular biology; Dr. Ning Liu, postdoctoral researcher in molecular biology; graduate student research assistant Andrew Williams; research technician John McAnally; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; and Dr. James Richardson, professor of pathology and molecular biology.

The work was supported by the National Institutes of Health, the Donald W. Reynolds Cardiovascular Clinical Research Center at UT Southwestern and the Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:

Further reports about: Micro Molecular RNA miR-195

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>