Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro molecules contribute mightily to heart problem

14.11.2006
Tiny bits of RNA — a chemical cousin of DNA — play a large role in causing enlargement of the heart, which is a major risk factor for heart failure and sudden death, researchers at UT Southwestern Medical Center have discovered.

Their findings, available online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences, are part of a fast-growing research field revealing the wide importance of so-called micro ribonucleic acids, or miRNAs, in numerous bodily functions, including cancer, cell death and cell growth.

“They haven’t been studied for very long,” said Dr. Eric Olson, chairman of molecular biology and senior author of the study. “These particular micro RNAs aren’t just markers of heart failure. They’re actually able to cause the disease, at least in mice.

“This is the first evidence for the involvement of micro RNAs in adult heart disease,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.

Eventually, manipulating micro RNAs might be a way to treat heart disease, the researchers reported. A micro RNA can be blocked with a short complementary fragment of genetic material engineered to attach to RNA and neutralize it.

... more about:
»Micro »Molecular »RNA »miR-195

The process of identifying the damage-causing micro RNAs started with the researchers investigating whether any micro RNAs were present at abnormal levels in diseased, enlarged hearts of mice. Sixteen of the 28 such micro RNAs identified were focused on because they were similar to those found in humans and rats. The researchers found that some of the same micro RNAs are present at abnormal concentrations in diseased human hearts, suggesting that these micro RNAs also play a role in human heart disease.

Dr. Olson’s team eventually zeroed in on one micro RNA, called miR-195, which had both visible and functional effects on the heart. These effects were established by creating genetically modified mice that had higher-than-normal amounts of miR-195. Those mice had misshapen hearts and decreased pumping power.

In addition, adding miR-195 to heart cells cultured in dishes made the cells larger and more disorganized.

Because some of the micro RNAs studied are known to be involved in other cell processes, the researchers speculate that these particular RNAs play a role in cell division or growth of heart muscle cells. Further research is needed to determine the mechanism by which miR-195 causes the heart to enlarge, Dr. Olson said.

Other UT Southwestern researchers involved in the study were Dr. Eva van Rooij, postdoctoral researcher in molecular biology and the study’s lead author; Lillian Sutherland, research scientist in molecular biology; Dr. Ning Liu, postdoctoral researcher in molecular biology; graduate student research assistant Andrew Williams; research technician John McAnally; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; and Dr. James Richardson, professor of pathology and molecular biology.

The work was supported by the National Institutes of Health, the Donald W. Reynolds Cardiovascular Clinical Research Center at UT Southwestern and the Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Micro Molecular RNA miR-195

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>