Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey pee, monkey poo

18.01.2002


Chimpanzee waste could shed light on the origins and spread of HIV.


One-year-old Flick gets a clean bill of health.
© Science


Richard Wrangham checks chimpanzee faeces.
© Science



Delving into droppings has given AIDS researchers a surprise. Far fewer chimpanzees than they had suspected have SIVcpz, the animal virus most like HIV.

The technique could shed much-needed light on the origins and evolution of the viruses that cause AIDS. "It’s a non-invasive means to study the wild relative of HIV in its natural environment," says Beatrice Hahn, of the University of Alabama in Birmingham, who led the new study1.


Working in Côte d’Ivoire, Uganda and Tanzania, Hahn’s team collected urine in upturned umbrellas left beneath chimp nests. They tested this for antibodies against SIVcpz (simian immunodeficiency virus). They then tested the faeces of SIVcpz -positive animals to identify which virus strain they had. Three strains of SIVcpz are closely related to HIV-1, which causes the majority of AIDS deaths in the West.

Of 58 animals tested, just one had SIVcpz. This figure has HIV experts intrigued: SIV rates can reach 90% in other primates such as African green monkeys. Many expected similar levels of infection in wild chimps.

"The prevalence is remarkably low," says Edward Holmes of the University of Oxford, UK, who studies the origin and evolution of AIDS. The finding suggests that SIV spreads very slowly between wild chimps even in central West Africa. Yet it is here, in the forests of Cameroon and Gabon, that the SIVcpz strains most similar to HIV-1 are believed to have originated and spawned the AIDS pandemic.

That SIVcpz seems to spread poorly may have some bearing on why HIV spreads so well - even in non-human primates deliberately infected with HIV-1. "It’s interesting to know that SIVcpz is not super-infectious," says Simon Wain-Hobson, a virologist at the Pasteur Institute in Paris, France.

Low in the mix

Until more wild animals are tested, scientists should not rush to draw too many conclusions, Hahn cautions. SIVcpz may be more common in chimps than this first faecal and urine survey suggests. Colonies rarely mix and deforestation has restricted their movement. So the virus could well be found in other groups in the future.

Holmes agrees: "There must be populations out there and we just haven’t found them." SIVcpz is a relatively young virus, says Holmes. Having been present in chimps for perhaps less than 100 years, it is unlikely to have died out.

Continued sampling of chimpanzee waste, especially in central West Africa, may pinpoint the few populations that still harbour the ancestor of HIV-1.

The technique could also help to monitor the risk of other infectious diseases emerging from our wild relatives as we continue to encroach on their habitat. "It really does open a door to look for [other] viruses in endangered populations," Holmes says.

References

  1. Santiago, M. L. et al. SIVcpz in wild chimpanzees. Science, 295, 465, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-10.html

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>