Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey pee, monkey poo

18.01.2002


Chimpanzee waste could shed light on the origins and spread of HIV.


One-year-old Flick gets a clean bill of health.
© Science


Richard Wrangham checks chimpanzee faeces.
© Science



Delving into droppings has given AIDS researchers a surprise. Far fewer chimpanzees than they had suspected have SIVcpz, the animal virus most like HIV.

The technique could shed much-needed light on the origins and evolution of the viruses that cause AIDS. "It’s a non-invasive means to study the wild relative of HIV in its natural environment," says Beatrice Hahn, of the University of Alabama in Birmingham, who led the new study1.


Working in Côte d’Ivoire, Uganda and Tanzania, Hahn’s team collected urine in upturned umbrellas left beneath chimp nests. They tested this for antibodies against SIVcpz (simian immunodeficiency virus). They then tested the faeces of SIVcpz -positive animals to identify which virus strain they had. Three strains of SIVcpz are closely related to HIV-1, which causes the majority of AIDS deaths in the West.

Of 58 animals tested, just one had SIVcpz. This figure has HIV experts intrigued: SIV rates can reach 90% in other primates such as African green monkeys. Many expected similar levels of infection in wild chimps.

"The prevalence is remarkably low," says Edward Holmes of the University of Oxford, UK, who studies the origin and evolution of AIDS. The finding suggests that SIV spreads very slowly between wild chimps even in central West Africa. Yet it is here, in the forests of Cameroon and Gabon, that the SIVcpz strains most similar to HIV-1 are believed to have originated and spawned the AIDS pandemic.

That SIVcpz seems to spread poorly may have some bearing on why HIV spreads so well - even in non-human primates deliberately infected with HIV-1. "It’s interesting to know that SIVcpz is not super-infectious," says Simon Wain-Hobson, a virologist at the Pasteur Institute in Paris, France.

Low in the mix

Until more wild animals are tested, scientists should not rush to draw too many conclusions, Hahn cautions. SIVcpz may be more common in chimps than this first faecal and urine survey suggests. Colonies rarely mix and deforestation has restricted their movement. So the virus could well be found in other groups in the future.

Holmes agrees: "There must be populations out there and we just haven’t found them." SIVcpz is a relatively young virus, says Holmes. Having been present in chimps for perhaps less than 100 years, it is unlikely to have died out.

Continued sampling of chimpanzee waste, especially in central West Africa, may pinpoint the few populations that still harbour the ancestor of HIV-1.

The technique could also help to monitor the risk of other infectious diseases emerging from our wild relatives as we continue to encroach on their habitat. "It really does open a door to look for [other] viruses in endangered populations," Holmes says.

References

  1. Santiago, M. L. et al. SIVcpz in wild chimpanzees. Science, 295, 465, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-10.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>