Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selectively blocking inflammatory signals may protect mice from MS

10.05.2006
A new way to preserve the cells that surround and protect nerves could lead to new treatments for demyelinating diseases such a multiple sclerosis, a research team reports in the May 10, 2006, issue of the Journal of Neuroscience.

The approach grew out of a novel explanation, quickly gaining followers, for the mechanism of nerve damage caused by multiple sclerosis. Instead of concentrating on the alterations that result in autoimmune assaults on the nervous system, researchers led by Brian Popko of the University of Chicago have focused on a set of factors that prevent recovery from the inflammatory attacks.

A series of papers from Popko’s lab has demonstrated that interferon-gamma -- a chemical signal used to activate the immune system -- plays a critical role in damaging the cells that produce myelin, the protective coating that lines healthy nerves. Interferon not only leaves these cells, called oligodendrocytes, incapable of repairing the damage but can also kill them directly.

"Interferon-gamma is not normally found in the nervous system," said Popko, the Jack Miller Professor of Neurological Diseases at the University of Chicago, "but it can gain entry after an inflammatory flare-up. We previously showed how it harmed oligodendrocytes. Here we confirm its direct harmful effects on those cells and demonstrate one way of protecting them."

The researchers produced a series of transgenic mice. In one set they introduced genes that produced interferon-gamma within the central nervous system. In another set they also introduced a gene (known as suppressor of cytokine signaling 1, or SOCS1) that blocked the response of myelin-producing cells to interferon-gamma.

Although transgenic mice with low levels of interferon-gamma showed no symptoms of nervous system damage, 18 out of 20 mice exposed to higher interferon levels developed difficulty walking, including mild to moderate tremors, within two weeks of birth. Only four out of 20 mice with both high interferon levels and the SOCS1 gene had symptoms.

On autopsy, mice with high interferon levels in the nervous system had severe loss of oligodendrocytes, ranging from 20 to 40 percent. Those with the protective SOCS1 gene lost only eight to 15 percent.

High interferon levels were also associated with loss of myelin sheaths around nerve connections and unprotected axons in the brain. Again, SOCS1 was able to reduce the damage.

"Together," the researchers wrote, "these data demonstrate that oligodendroglial expression of SOCS1 protects mice from the clinical and morphological consequences of IFN-gamma expression in the central nervous system during development."

"We found this tremendously encouraging," said Popko. "SOCS1 prevented or reduced the harmful effects of interferon gamma on myelin-producing cells. This study solidifies our suspicions about interferon’s specific role in demyelinating disease and suggests ways to block it."

Although there is currently no reliable way to deliver SOCS1 directly to the nerves of a patient with multiple sclerosis, this protective approach could be combined with stem cell therapy to repair nerve damage. Several research groups are already studying the use of stem cells to repair damaged myelin sheaths, but in the long term those stem cells would be vulnerable to ongoing immune-mediated damage.

But if stem cells could be engineered to resist harmful signals such as interferon-gamma, they might be protected from the "harsh environment" present in immune mediated demyelinated lesions, said Popko.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>