Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selectively blocking inflammatory signals may protect mice from MS

10.05.2006
A new way to preserve the cells that surround and protect nerves could lead to new treatments for demyelinating diseases such a multiple sclerosis, a research team reports in the May 10, 2006, issue of the Journal of Neuroscience.

The approach grew out of a novel explanation, quickly gaining followers, for the mechanism of nerve damage caused by multiple sclerosis. Instead of concentrating on the alterations that result in autoimmune assaults on the nervous system, researchers led by Brian Popko of the University of Chicago have focused on a set of factors that prevent recovery from the inflammatory attacks.

A series of papers from Popko’s lab has demonstrated that interferon-gamma -- a chemical signal used to activate the immune system -- plays a critical role in damaging the cells that produce myelin, the protective coating that lines healthy nerves. Interferon not only leaves these cells, called oligodendrocytes, incapable of repairing the damage but can also kill them directly.

"Interferon-gamma is not normally found in the nervous system," said Popko, the Jack Miller Professor of Neurological Diseases at the University of Chicago, "but it can gain entry after an inflammatory flare-up. We previously showed how it harmed oligodendrocytes. Here we confirm its direct harmful effects on those cells and demonstrate one way of protecting them."

The researchers produced a series of transgenic mice. In one set they introduced genes that produced interferon-gamma within the central nervous system. In another set they also introduced a gene (known as suppressor of cytokine signaling 1, or SOCS1) that blocked the response of myelin-producing cells to interferon-gamma.

Although transgenic mice with low levels of interferon-gamma showed no symptoms of nervous system damage, 18 out of 20 mice exposed to higher interferon levels developed difficulty walking, including mild to moderate tremors, within two weeks of birth. Only four out of 20 mice with both high interferon levels and the SOCS1 gene had symptoms.

On autopsy, mice with high interferon levels in the nervous system had severe loss of oligodendrocytes, ranging from 20 to 40 percent. Those with the protective SOCS1 gene lost only eight to 15 percent.

High interferon levels were also associated with loss of myelin sheaths around nerve connections and unprotected axons in the brain. Again, SOCS1 was able to reduce the damage.

"Together," the researchers wrote, "these data demonstrate that oligodendroglial expression of SOCS1 protects mice from the clinical and morphological consequences of IFN-gamma expression in the central nervous system during development."

"We found this tremendously encouraging," said Popko. "SOCS1 prevented or reduced the harmful effects of interferon gamma on myelin-producing cells. This study solidifies our suspicions about interferon’s specific role in demyelinating disease and suggests ways to block it."

Although there is currently no reliable way to deliver SOCS1 directly to the nerves of a patient with multiple sclerosis, this protective approach could be combined with stem cell therapy to repair nerve damage. Several research groups are already studying the use of stem cells to repair damaged myelin sheaths, but in the long term those stem cells would be vulnerable to ongoing immune-mediated damage.

But if stem cells could be engineered to resist harmful signals such as interferon-gamma, they might be protected from the "harsh environment" present in immune mediated demyelinated lesions, said Popko.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>