Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for memory revealed in neurons of electric fish

20.02.2006


Researchers from The University of Texas at Austin studying electric fish have gained new insight into how memory is stored at the level of neurons.



Their finding, published in the Feb. 16 issue of Neuron, could help researchers better understand memory formation and neural disorders like epilepsy in humans.

Dr. Harold Zakon, Dr. Jörg Oestreich and colleagues show that when electric fish zap each other in dark waters, their neurons store a memory of the sizzling communiqué by turning on special cell membrane channels.


The channels give the fish neurons the ability to retain a memory long after its original stimulus is gone.

"There is short-term stimulation that results in long-term changes in excitability," says Zakon, professor of neurobiology. "Essentially, it is memory."

The electric fish studied by Zakon and Oestreich discharge electrical signals to survey their environment and communicate with each other.

"Every time they discharge, it’s kind of like they are opening their eyes and closing them," says Zakon. "Each pulse of electricity is a snapshot of the environment. These guys are swimming around and discharging at a very regular frequency. They’re digitizing their environment."

But a problem occurs when the fish are close to each other. They can jam each other’s electrical signals. In response, one of the fish will jump to a higher frequency to avoid the jamming signal, emitting more electrical pulses per second than its neighbor.

Oestreich and Zakon found that once the jamming avoidance has started, the fish’s neurons continue to discharge at a higher frequency, even after its neighbor fish may have swum away.

The researchers discovered that the neurons’ memory was not caused by increased flow of glutamate to their synapses. Glutamate is the major excitatory neurotransmitter in the nervous system and is involved in the processes of learning and memory. They blocked glutamate and found that it did not affect the memory of the neurons.

Instead, the glutamate sets off a cascade of events in the neuron that results in the activation of ion channels, called TRP channels, which then remain active for a long time.

"The long-term activation of these TRP channels," says Zakon, "is the ’memory.’"

Zakon, Oestreich and colleagues don’t yet understand how the stimulus leads to the long-lasting activation of the TRP channel. They are pursuing further studies.

"We’re looking at the general idea that we have long-term changes in the brain that affect the computation that neurons do," says Zakon. "We have ion channels [in the neurons] and we know those are activated. The mystery is how a short stimulus leads to such a long-lasting activation of the TRP receptor."

Harold Zakon | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>