Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncologists could gain therapeutic advantage by targeting telomere protein

20.02.2006


Inactivating a protein called mammalian Rad9 could make cancer cells easier to kill with ionizing radiation, according to research at Washington University School of Medicine in St. Louis.



The researchers found that Rad9, previously considered a "watchman" that checks for DNA damage, is actually a "repairman" that fixes dangerous breaks in the DNA double helix. They found Rad9 is especially active in telomeres, the protective ends of chromosomes.

Because of this new role, Rad9 has gained the researchers’ interest as a potential target for cancer therapy -- knocking out Rad9 would enhance the power of radiation treatments by making it easier for radiation to inflict fatal damage to a tumor’s genetic material. Their study appears in the March issue of the journal Molecular and Cellular Biology, which is now available online.


"Our study suggests that if we could inactivate Rad9 in tumor cells, we would be able to kill them with a very low dose of radiation and gain a therapeutic advantage," says senior author Tej K. Pandita, Ph.D., associate professor of radiation oncology and on the faculty of the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

The study revealed that Rad9 proteins interact with chromosomes’ telomeres, which are special structures at the ends of chromosomes that protect them from fusion or degradation. Specifically, Rad9 proteins were shown to interact with proteins called telomere binding proteins. When the scientists inactivated Rad9 in human cells, they saw damage to chromosomes and end-to-end fusion at telomeres. DNA damage and chromosomal fusion can disrupt the cell cycle and cause cell death. Because radiation treatments increase these incidents, loss of Rad9 in cancer cells could enhance the killing effect of radiation.

Previous research had suggested that Rad9 maintains cell cycle checkpoint controls--scientists thought that the protein helped monitor DNA during replication and signaled the cell to stop its growth cycle if damage was detected. That role is not supported by this current research, and it has become evident that Rad9 directs the repair of DNA damage instead, according to Pandita,.

"We saw that Rad9 stabilizes telomeres, and because we aren’t yet sure how it does it, we will continue to study how Rad9 influences the telomere structure," Pandita says. "We speculate that without Rad9, some of the other proteins associated with the telomeric structure become delocalized, exposing the DNA at the ends of chromosomes."

In addition to being able to enhance radiosensitization of cancerous tissues by inactivating Rad9, the researchers would like to be able to identify people with mutations in Rad9 because such mutations could predispose a person to cancer.

"If Rad9 isn’t functioning properly in cells, it can lead to genomic instability and result in the malignant transformation of cells," Pandita says. "In fact, fusions at the telomeric ends of chromosomes like those seen in the absence of Rad9 appear frequently in tumor tissues."

The study’s findings place Rad9 at an important juncture: its function is vital to the health of cells, and this makes it a key vulnerability to exploit for cancer therapy.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>