Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncologists could gain therapeutic advantage by targeting telomere protein

20.02.2006


Inactivating a protein called mammalian Rad9 could make cancer cells easier to kill with ionizing radiation, according to research at Washington University School of Medicine in St. Louis.



The researchers found that Rad9, previously considered a "watchman" that checks for DNA damage, is actually a "repairman" that fixes dangerous breaks in the DNA double helix. They found Rad9 is especially active in telomeres, the protective ends of chromosomes.

Because of this new role, Rad9 has gained the researchers’ interest as a potential target for cancer therapy -- knocking out Rad9 would enhance the power of radiation treatments by making it easier for radiation to inflict fatal damage to a tumor’s genetic material. Their study appears in the March issue of the journal Molecular and Cellular Biology, which is now available online.


"Our study suggests that if we could inactivate Rad9 in tumor cells, we would be able to kill them with a very low dose of radiation and gain a therapeutic advantage," says senior author Tej K. Pandita, Ph.D., associate professor of radiation oncology and on the faculty of the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

The study revealed that Rad9 proteins interact with chromosomes’ telomeres, which are special structures at the ends of chromosomes that protect them from fusion or degradation. Specifically, Rad9 proteins were shown to interact with proteins called telomere binding proteins. When the scientists inactivated Rad9 in human cells, they saw damage to chromosomes and end-to-end fusion at telomeres. DNA damage and chromosomal fusion can disrupt the cell cycle and cause cell death. Because radiation treatments increase these incidents, loss of Rad9 in cancer cells could enhance the killing effect of radiation.

Previous research had suggested that Rad9 maintains cell cycle checkpoint controls--scientists thought that the protein helped monitor DNA during replication and signaled the cell to stop its growth cycle if damage was detected. That role is not supported by this current research, and it has become evident that Rad9 directs the repair of DNA damage instead, according to Pandita,.

"We saw that Rad9 stabilizes telomeres, and because we aren’t yet sure how it does it, we will continue to study how Rad9 influences the telomere structure," Pandita says. "We speculate that without Rad9, some of the other proteins associated with the telomeric structure become delocalized, exposing the DNA at the ends of chromosomes."

In addition to being able to enhance radiosensitization of cancerous tissues by inactivating Rad9, the researchers would like to be able to identify people with mutations in Rad9 because such mutations could predispose a person to cancer.

"If Rad9 isn’t functioning properly in cells, it can lead to genomic instability and result in the malignant transformation of cells," Pandita says. "In fact, fusions at the telomeric ends of chromosomes like those seen in the absence of Rad9 appear frequently in tumor tissues."

The study’s findings place Rad9 at an important juncture: its function is vital to the health of cells, and this makes it a key vulnerability to exploit for cancer therapy.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>