Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules overcome drug resistance in cancers associated with high-risk viruses

14.02.2006


Treatment of human cancer is often impeded when cancer cells develop resistance to drugs that are designed to induce a type of programmed cell death called apoptosis. A new study published in the February issue of Cancer Cell identifies compounds and mechanisms that can overcome a specific type of resistance to chemotherapeutic-induced apoptosis. The findings may have application for treatment of cancers that are linked to the human papilloma virus (HPV) oncoprotein E6, such as cervical cancer.



Certain viral oncoproteins, including HPV E6, are known to interfere with the function of a protein called p53, a key tumor suppressor involved in apoptosis. Loss of p53 is linked to uncontrolled cell proliferation, the hallmark of cancer, and is known to increase the resistance of tumor cells to some chemotherapeutic treatments. HPV is a major cause of cervical cancer, and earlier studies have suggested that interfering with E6 may lead to the death of E6-expressing cells. However, methods used to target E6 in these studies involved techniques that are not easily translatable to therapeutic use, and at this time, no specific therapies exist.

Dr. Brent R. Stockwell and colleagues from Columbia University designed a study to uncover small molecules that can overcome E6-induced drug resistance and which would be more easily adaptable to cancer treatment. The researchers used a screening method to look for compounds that potentiate chemotherapeutic effectiveness of the agent doxorubicin in E6-expressing colon cancer cells that are normally relatively resistant to the drug. "We identified several groups of compounds that potentiate doxorubicin’s lethality in E6-expressing tumor cells, thus overcoming E6-induced drug resistance," offers Dr. Stockwell.


Results describe one group of compounds, named indoxins, that proved to be dual-action agents that drive two distinct cell cycle-related mechanisms. Dr. Stockwell explains that activation of each mechanism alone had only a modest effect on chemotherapeutic effectiveness, but activation of both mechanisms simultaneously contributed substantially to doxorubicin sensitivity. Enhanced understanding of the mechanisms that are associated with doxorubicin resistance will lead to design of future therapies that can be specifically targeted to overcome drug resistance in E6-expressing tumors.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.cancercell.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>