Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Skull Analysis Gives Information About Gene Pool

14.02.2006


Despite success of molecular genetics that developed efficient methods for educing mitochondrial DNA from fossil bones, anthropologists prefer primary sources as before and keep investigating skulls. Each skull possess multitude of distinctive and well-perceptible signs: these are supplementary and fontanel bones, sutural bones (epactal ossicle), accessory and inconstant orifices, appendices and protuberances.



As peculiarities of the skull structure are genetically determined, the set of signs allows to judge about the genotype of its owner, and the frequency at which some feature is found reflects genetic peculiarities of the population. In this case, the idea about genetic diversity of populations including the fossilized ones, and about their kinship may be compiled without resorting to molecular methods, thus making the process much easier and less expensive. But will this information be trustworthy?

In various anthropological museums, researchers collected and described 3,475 skulls of representatives of 62 nations of the world. The analysis was carried out based on 35 signs. The obtained level of inter-ethnic diversity is comparable with the already known level of genetic diversity, therefore, signs of skull bones structure represent a trustworthy source of information that is particularly precious in the cases when only bones remain from studied nations.


As characters of skull bones reflect genetic processes taking place in the populations, these signs may be used to reconstruct the ancient populations’ gene pool, to track their kinship ties with each other and with contemporary ethnoses. Thus, it has turned out that the Baikal area was populated during the Stone Age by the people that differed from each other no less than, for example, contemporary Eskimos from Tuvinians.

However, averaged skull characteristics of ancient and contemporary Siberian inhabitants testify to their undoubted kinship. This conclusion was later fully confirmed by the analysis of mitochondrial DNA of contemporary and fossil populations. There is no doubt either about genetic commonality of ancient and contemporary Armenians.

Contemporary ethnoses can be divided into four main groups based on the skull classification: Australo-Negroids, Europeoids, Mongoloids of Siberia and populations of the South-Eastern Asia, where two groups of American Indians adjoin. This classification is rather close to the genetic one both in terms of the content of big groups and sequence of their division. However, one significant distinction does exist: geneticists always separate African and non-African people, whereas skull structure make inhabitants of Eastern Africa related with aboriginal population of Australia. As the majority of investigated signs did not depend on geographical coordinates or climatic peculiarities of the region, skulls similarity cannot be explained by external actions. Probably, it reflects the traces of ancient migrations into Melanesia from Eastern Africa. According to the latest archeological data, populating of Australia by human beings started no later than 60 thousand years ago. And molecular geneticists believe that first migrants went away from Africa not northwards but along the coast of South-East Asia. So, skull analysis results fully agree with existing hypotheses.

It might be certainly that emergence of new paleogenetic and paleoanthropological data will change more than once our notions about routes and stages of mankind settling. At this phase, other thing is fundamentally important – analysis of certain characteristics of skull structure allow to recreate the picture of racial differentiation and to judge about kinship ties between different ancient and contemporary populations of human beings.

| alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>