Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot-spring bacteria flip a metabolic switch

31.01.2006


Scientists at the Carnegie Institution’s Department of Plant Biology have found that photosynthetic bacteria living in scalding Yellowstone hot springs have two radically different metabolic identities. As the sun goes down, these cells quit their day job of photosynthesis and unexpectedly begin to fix nitrogen, converting nitrogen gas (N2) into compounds that are useful for cell growth. The study, published January 30 in the early online edition of the Proceedings of the National Academy of Sciences, is the first to document an organism that can juggle both metabolic tasks within a single cell at high temperatures, and also helps answer longstanding questions about how hot-spring microbial communities get essential nitrogen compounds.


The near-boiling pools of Octopus Spring in Yellowstone National Park are ringed with microbial mats – highly organized communities where photosynthetic cyanobacteria serve as the main power plants. Researchers have found that the single-celled cyanobacterium Synechococcus drops its day job of photosynthesis, and surprisingly fixes nitrogen gas (N2) into biologically useful compounds at night.



Carnegie’s Arthur Grossman, Devaki Bhaya, and Anne-Soisig Steunou, along with colleagues from four partner institutions*, are studying the tiny, single-celled cyanobacterium Synechococcus. Cyanobacteria evolved about three billion years ago, and are the oldest organisms on the planet that can turn solar energy and carbon dioxide into sugars and oxygen via photosynthesis. In fact, ancient cyanobacteria produced most of the oxygen that allows animals to survive on Earth.

Cyanobacteria such as Synechococcus are often found in the microbial mats that carpet hot springs, where life exists at near-boiling temperatures. These mats are highly organized communities where different organisms split up the work, with cyanobacteria serving as the main photosynthetic power plants. Microbial mats in Yellowstone National Park’s Octopus Spring contain Synechococcus that can grow in waters up to around 160°F, while other microbes in the hot spring can tolerate temperatures that exceed 175°F. But until now, it was unclear which organisms could fix nitrogen--especially in the hotter regions of the mat.


"The cyanobacteria are true multitaskers within the mat community," Grossman said. "We had assumed that the single-celled cyanobacteria growing at elevated temperatures were specialized for photosynthesis, but it looks like they have a more complicated metabolism than we initially suspected."

All cells require nitrogen for making proteins and nucleic acids, but N2 gas from the atmosphere cannot be directly used for this purpose; it must first be reduced or fixed into larger, carbon-containing compounds. N2 fixation is a problem for photosynthetic cells, since the oxygen produced during photosynthesis inhibits the nitrogenase complex--the enzyme factory that fixes N2. Other organisms have found creative solutions to this dilemma. For example, plants rely on symbiotic N2-fixing bacteria that live in their roots, far away from the photosynthetic leaves. A different type of cyanobacteria grows in multicellular strands and makes specialized N2-fixing cells called heterocysts that are walled off from the photosynthetic cells.

Many researchers believed these filamentous cyanobacteria were the major N2 fixers in microbial mats. But they are not tolerant of extremely high temperatures, and only live at the cooler edges of the mat, raising the question of whether N2 fixation was critical for organisms in the hotter regions of the mat. Because heat tolerant, single-celled cyanobacteria like Synechococcus specialize in photosynthesis, many researchers had dismissed them as candidates for N2 fixation.

"Synechococcus cannot spatially separate photosynthesis and N2 fixation, as some photosynthetic organisms do," Bhaya explained. "Instead, they solve the problem by temporally separating the tasks."

Lead author Steunou and her collaborators tracked the activity of genes involved in photosynthesis and N2 fixation over a 24-hour period. They found that photosynthetic genes shut down shortly after nightfall, and N2-fixation genes switch on shortly thereafter. The nitrogenase enzyme complex snaps into action at about the same time, following the same pattern as the N2-fixation genes.

Fixing N2 requires a lot of energy, which raises another problem for Synechococcus. When photosynthesis shuts down at night, the mat becomes oxygen starved, making it difficult to perform respiration--an efficient energy-generating pathway that requires O2 to release the energy stored in sugars. Instead, the cells must rely on fermentation--a less efficient energy-generating pathway that can proceed without oxygen. Steunou and colleagues found that at night, Synechococcus turns on genes for specific fermentation pathways that release energy from polyglucose, which probably powers N2 fixation.

"These results add to our understanding of microbial mats as complex, integrated communities that are exquisitely adapted to life in the tough hot spring environment," Grossman commented. "There may be several different organisms living in a given mat, but it seems that they are engaging in community metabolism that changes depending on the time of day. Perhaps it is more correct to consider the mat as a single functional unit rather than as a group of individual organisms."

Dr. Arthur Grossman | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>