Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for arthritis stems from within

31.01.2006


Leeds bioengineers have developed an innovative technique for cartilage repair combining the self-healing powers of the body with stem cell science to help young people avoid debilitating knee problems and give hope to arthritis sufferers.



Current treatments of cartilage defects in the knee are expensive, have lengthy recovery times, and can even cause as much damage as good. “We’re responding to a real need,” said reader in bioengineering Dr Bahaa Seedhom.

“Orthopaedic surgeons are looking for ways to repair cartilage defects in young people which will delay, maybe even prevent, the need for total knee replacement.”


The bioengineers have invented a repair technique – and tools – that cut surgery times from two hours to ten minutes, and can have patients back on their feet within three weeks. The treatment involves a surgical technique called subchondral drilling, where holes are drilled into the bone beneath the cartilage in the damaged site, causing bleeding from the bone marrow, which stimulates stem cells to grow tissue within the damaged area. Surgeons then implant a felt-like pad, to encourage the cells to expand and grow into tissue.

As the treatment uses the body’s own stem cells, it is much cheaper than existing methods, where tissue is engineered outside the body and then implanted. The system has potential for widescale applications. “Initially young people with small defects will be most suitable for treatment, but once the system has been put through its paces it might well be used for larger defects in older arthritic patients,” said Dr Seedhom.

Dr Seedhom is joined on the project by Drs Toyoda, Luo, Lorrison and Michael Pullan from bioengineering. The arthritis research campaign has awarded the project £131,000 to explain the cartilage regeneration process, and Smith and Nephew have begun an evaluation programme to commercialise the technology for clinical use within four years.

Claire Jones | alfa
Further information:
http://www.leeds.ac.uk/medicine/musculoskeletal/bioengeneering.html
http://reporter.leeds.ac.uk/513/s2.htm

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>