Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Laser Technique Sheds Light on Strokes

05.01.2006


Images showing direction of blood flow (white and red arrows) before, during and after clot formation (red X) Credit: Chris Schaffer, Nozomi Nishimura and David Kleinfeld, UCSD, PLOS Biology


A technique developed at the University of California, San Diego that precisely creates and images blood clots in the brain in real time could make it possible to understand the small strokes implicated in many forms of dementia, including Alzheimer’s disease.

The study, published this week in the early on-line edition of the journal Public Library of Science Biology, represents a collaboration between the research groups of David Kleinfeld, professor of physics at UCSD, and Patrick Lyden, professor of neurosciences at UCSD’s School of Medicine. The paper will appear in the print edition of the journal in February.

Using a laser to trigger the formation of individual blood clots in tiny arteries of the brains of anesthetized rats, the researchers were able to monitor the resulting changes in blood flow. They say that their study provides a way to understand small strokes common in elderly humans. These strokes often cause no immediate symptoms, but they are thought to contribute to dementia and may ultimately cause larger strokes.



“Our technique makes it possible, for the first time, to precisely target individual blood vessels to create a blood clot while causing very little collateral damage,” explained Kleinfeld. “We can then follow, in real time, the changes in blood flow in surrounding vessels that occur as a result of the formation of a clot in one small artery of the brain.”

“We know from MRI scans that small strokes are very common in the brains of elderly patients,” added Lyden. “Such small strokes have been linked with dementia, and may also put patients at risk for a major stroke. The power of the technique we describe in the paper is that it allows us to study the response of the brain to stroke in a controlled way. By understanding what happens, we hope to learn how to prevent the major damage associated with stroke.”

In the study, the team members used tightly focused laser light to excite a dye that they had injected into the bloodstream. The excited dye reacted with oxygen to form a free radical, which “nicked” the cells lining the blood vessel at the target location, and triggered the natural blood clotting cascade.

Using two-photon fluorescence microscopy—a powerful imaging tool that uses brief (less than one-trillionth of a second) laser pulses to peer below the surface of the brain, the researchers snapped frames every second before and after the formation of the blood clot. They also measured blood flow in the arteries upstream and downstream of the clot. Remarkably, immediately following the formation of the clot, blood flow downstream of the clot reversed itself.

“People tend to think of blood flow like a river,” said Chris Schaffer, the lead author on the paper, who was an assistant project scientist working with Kleinfeld in physics at the time of the discovery. “If you dam one tributary, then everything downstream from there would be cut off. However, we’ve found that the more complicated topology of the blood vessels leads to the counterintuitive result that blood flow in some downstream vessels reverses direction to compensate for the blockage.”

In the paper, the researchers discuss how this result can explain the observation, by clinicians, that certain regions of the brain seem to be protected from stroke. These protected regions of the brain have networks of vessels with extensive redundant connections. In the case of a blockage, these redundant connections permit blood to flow through alternate loops and be pushed in the opposite direction below the clot, as observed in this study. The reversal prevents downstream regions of the brain from being starved of oxygen.

In addition to what the researchers could observe in real time, the technique facilitates follow-up because the fluorescent molecules used to visualize blood flow bind to injured places in the artery.

“Rather than having to tediously search for the targeted vessels using brain sections, the fluorescence provides a kind of footprint that can be followed,” said Beth Friedman, an associate project scientist working with Lyden in neurosciences and a contributing author on the paper. “Then you can look to see if there have been biochemical changes in the region of the clot, or changes in what genes are expressed, which is especially important to determine if an intervention protects against damage from stroke.”

Kleinfeld and Lyden attributed the advance to collaboration across traditional disciplinary boundaries.

“Pat and I are coming from different worlds, but we had the same question at the back of our minds,” said Kleinfeld.

“Joining forces allowed us to crack a puzzle that either one of us couldn’t crack alone,” added Lyden

Other contributors to the study were Nozomi Nishimura, Lee Schroeder and Philbert Tsai at UCSD and Ford Ebner at Vanderbilt University, Nashville. The research was supported by the David and Lucille Packard Foundation, the Veteran’s Affairs Medical Research Department, the National Institutes of Health, the Burroughs Wellcome Fund and the National Science Foundation.

Media Contact: Sherry Seethaler, (858) 534-4656.

Comment: David Kleinfeld, (858) 822-0342.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>