Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Laser Technique Sheds Light on Strokes

05.01.2006


Images showing direction of blood flow (white and red arrows) before, during and after clot formation (red X) Credit: Chris Schaffer, Nozomi Nishimura and David Kleinfeld, UCSD, PLOS Biology


A technique developed at the University of California, San Diego that precisely creates and images blood clots in the brain in real time could make it possible to understand the small strokes implicated in many forms of dementia, including Alzheimer’s disease.

The study, published this week in the early on-line edition of the journal Public Library of Science Biology, represents a collaboration between the research groups of David Kleinfeld, professor of physics at UCSD, and Patrick Lyden, professor of neurosciences at UCSD’s School of Medicine. The paper will appear in the print edition of the journal in February.

Using a laser to trigger the formation of individual blood clots in tiny arteries of the brains of anesthetized rats, the researchers were able to monitor the resulting changes in blood flow. They say that their study provides a way to understand small strokes common in elderly humans. These strokes often cause no immediate symptoms, but they are thought to contribute to dementia and may ultimately cause larger strokes.



“Our technique makes it possible, for the first time, to precisely target individual blood vessels to create a blood clot while causing very little collateral damage,” explained Kleinfeld. “We can then follow, in real time, the changes in blood flow in surrounding vessels that occur as a result of the formation of a clot in one small artery of the brain.”

“We know from MRI scans that small strokes are very common in the brains of elderly patients,” added Lyden. “Such small strokes have been linked with dementia, and may also put patients at risk for a major stroke. The power of the technique we describe in the paper is that it allows us to study the response of the brain to stroke in a controlled way. By understanding what happens, we hope to learn how to prevent the major damage associated with stroke.”

In the study, the team members used tightly focused laser light to excite a dye that they had injected into the bloodstream. The excited dye reacted with oxygen to form a free radical, which “nicked” the cells lining the blood vessel at the target location, and triggered the natural blood clotting cascade.

Using two-photon fluorescence microscopy—a powerful imaging tool that uses brief (less than one-trillionth of a second) laser pulses to peer below the surface of the brain, the researchers snapped frames every second before and after the formation of the blood clot. They also measured blood flow in the arteries upstream and downstream of the clot. Remarkably, immediately following the formation of the clot, blood flow downstream of the clot reversed itself.

“People tend to think of blood flow like a river,” said Chris Schaffer, the lead author on the paper, who was an assistant project scientist working with Kleinfeld in physics at the time of the discovery. “If you dam one tributary, then everything downstream from there would be cut off. However, we’ve found that the more complicated topology of the blood vessels leads to the counterintuitive result that blood flow in some downstream vessels reverses direction to compensate for the blockage.”

In the paper, the researchers discuss how this result can explain the observation, by clinicians, that certain regions of the brain seem to be protected from stroke. These protected regions of the brain have networks of vessels with extensive redundant connections. In the case of a blockage, these redundant connections permit blood to flow through alternate loops and be pushed in the opposite direction below the clot, as observed in this study. The reversal prevents downstream regions of the brain from being starved of oxygen.

In addition to what the researchers could observe in real time, the technique facilitates follow-up because the fluorescent molecules used to visualize blood flow bind to injured places in the artery.

“Rather than having to tediously search for the targeted vessels using brain sections, the fluorescence provides a kind of footprint that can be followed,” said Beth Friedman, an associate project scientist working with Lyden in neurosciences and a contributing author on the paper. “Then you can look to see if there have been biochemical changes in the region of the clot, or changes in what genes are expressed, which is especially important to determine if an intervention protects against damage from stroke.”

Kleinfeld and Lyden attributed the advance to collaboration across traditional disciplinary boundaries.

“Pat and I are coming from different worlds, but we had the same question at the back of our minds,” said Kleinfeld.

“Joining forces allowed us to crack a puzzle that either one of us couldn’t crack alone,” added Lyden

Other contributors to the study were Nozomi Nishimura, Lee Schroeder and Philbert Tsai at UCSD and Ford Ebner at Vanderbilt University, Nashville. The research was supported by the David and Lucille Packard Foundation, the Veteran’s Affairs Medical Research Department, the National Institutes of Health, the Burroughs Wellcome Fund and the National Science Foundation.

Media Contact: Sherry Seethaler, (858) 534-4656.

Comment: David Kleinfeld, (858) 822-0342.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>