Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Faults in newly discovered breast stem cells may lead to tumours


Victorian Breast Cancer Research Consortium scientists from The Walter and Eliza Hall Institute, using a mouse model, have discovered the rare stem cell that drives the formation of all breast tissue. This discovery lays an important foundation for understanding how normal breast tissue develops. The identification of the breast stem cell is also likely to provide clues about how breast cancer develops and how rogue cells evade current therapies.

Under normal circumstances, the newly identified breast stem cell will produce healthy tissue. But it is believed that an accumulation of genetic errors, perhaps combined with external influences and a family predisposition, could cause the breast stem cell or a "daughter" cell to produce faulty cells. In effect, the errant breast cell can become a tumour factory.

For many years, scientists and clinicians have been puzzled by the fact that women whose breast cancer cells have been apparently eliminated by chemotherapy sometimes experience a recurrence of their cancer. A cancerous stem cell could provide one possible explanation for such a recurrence.

Chemotherapy works by targeting cells that are dividing rapidly, which is typical behaviour of cancer cells. But an errant stem-like cell may be more resistant to chemotherapy because it divides more slowly. So while chemotherapy can eliminate the bulk of cancer cells, the tumour factory itself – a breast cancer stem cell – may survive months or years later.

In the context of international breast cancer research, the discovery of the breast stem cell is quite profound and will most likely form the basis of research in the area for years to come.

The ultimate objective is to create a drug that will, in effect, switch off breast cancer cells. To do this, the exact makeup of genes expressed by normal and rogue stem cells will need to be determined. Then a drug will be designed to engage with and neutralize the faulty feature of the stem cell.

Further research is now under way on excised human breast tumours to confirm the findings derived from the mouse model. The research team is from the WEHI Group of the Victorian Breast Cancer Research Consortium, which is funded by the Victorian state government through the Cancer Council Victoria.

Brad Allen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>