Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs offer power tips

09.10.2001


Hydrogenases could fuel the future.
© J. Peters


The hydrogen-powered Gremlin from 1972. Cost hindered mass production.
© UCLA


Chemists copy bacterial tricks for making clean fuel.

Bacteria are teaching chemists their tips for creating lean, green fuel. US researchers have developed a catalyst based on a bacterial enzyme that converts cheap acids to hydrogen, the ultimate clean power source.

Unlike other fuels, hydrogen is non-polluting: its combustion makes only water, instead of greenhouse gas carbon dioxide or the poison carbon monoxide. Thomas Rauchfuss and colleagues at the University of Illinois at Urbana-Champaign believe they can steal the secrets of hydrogen-generating bacteria to make the gas cheaply and efficiently1.



Such bacteria contain enzymes called hydrogenases, which can make hydrogen gas from acids. Rauchfuss and his team made a synthetic catalyst that efficiently mimics this enzyme. For industrial hydrogen production, such catalysts might be easier to make, modify and maintain compared to living cells. Thus it should be possible to extract fuel from inexpensive, plentiful acids, they hope.

Like natural gas, hydrogen can be burnt and the energy converted directly into electricity in power sources called fuel cells. Prototypes of hydrogen-powered vehicles have been made, but availability of hydrogen is a sticking point. Although it can be made from sea water by electrolysis, this is not economical.

But hydrogen production and breakdown are a standard part of the metabolism of some bacteria in which they help to convert carbon dioxide and nitrogen into biologically useful compounds. Present-day hydrogen-producing bacteria are thought to be similar to those that predominated during the early days of life on Earth, when carbon dioxide and nitrogen are believed to have been major constituents of the atmosphere.

There are two general classes of hydrogenases. In one, the ’active site’ in the enzyme responsible for hydrogen conversion contains a nickel atom and an iron atom; in the other, this site contains two iron atoms. The two iron atoms are linked by a chemical bond, and are attached to other chemical groups including cyanide, carbon monoxide and sulphur-containing groups. The whole ’core’ is wrapped up in a protein coat. The team developed a small molecule that mimics the ’naked’ core of the active site, minus the coat.

The researchers are confident that it should be possible to make a version that dissolves in water, which would be industrially more useful. At present the catalyst dissolves only in organic solvents.


References

  1. Gloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. Journal of the American Chemical Society, 123, 9476 - 9477, (2001).

PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-3.html

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>