Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physiologists discover how temperature influences our taste

16.12.2005


The sweet taste of temperature



Why does a beer taste better if it comes from the fridge and does a warm beer taste bitter? Why is red Bordeaux wine best drunk at room temperature? And what causes that unique taste sensation of ice cream? Researchers from the Physiology section of the Katholieke Universiteit Leuven (K.U.Leuven, Belgium) have discovered, together with their Japanese and American colleagues, how the temperature sensitivity of our sense of taste works. Today, they publish their breakthrough in the top professional journal Nature.

How does taste recognition work?


People can distinguish five basic tastes: sour, sweet, salty, bitter, and umami (the Japanese term for the bouillon-like taste found in, for example, meat and mature cheeses). The perception of taste occurs in the taste buds in our tongue. These buds contain taste receptors, specialised proteins able to recognise sweet, bitter, and umami taste molecules in food and drinks. When taste molecules touch the taste receptors, microscopic channels – termed TRPM5 – open in the cell membrane of the taste buds. This causes an electric signal to arise in the taste buds that travels to the brain via nerve fibers, where it is translated into a specific taste sensation.

K.U.Leuven’s physiologists decipher the temperature sensitivity of our sense of taste

Physiologists from the university of Leuven have discovered that this Trpm5-channel in our taste buds is highly sensitive to changes in temperature. At 15ºC the channel scarcely opens, whereas at 37ºC its sensitivity is more than 100 times higher. The warmer the food or fluid in your mouth, that much stronger will TRPM5 react, and thus that much stronger is the electrical signal sent to the brain. For example, the sweet taste of ice cream will only be perceived when it melts and heats up in the mouth. If you serve the same ice cream warm, then the reaction of TRPM5 in your taste buds is much more intense and the taste of the melted ice cream is much sweeter.

Based on these findings, K.U.Leuven’s researchers now conclude in Nature that TRPM5 lies at the basis of our taste’s sensitivity to temperature. This was also confirmed in experiments on mice: taste responses increased dramatically when the temperature of sweet drinks was increased from 15°C to 37°C. This temperature sensitivity of sweet taste was entirely lacking in genetically altered mice that no longer produced the Trpm5 channel.

This research opens the way to the development of chemical substances influencing the functioning of the Trpm5-channels so as to suppress unpleasant tastes, for example, or to explore completely unprecedented and new taste experiences.

Finally, these results provide an explanation for a well known psychophysical experiment, whereby test persons experience taste sensations just by heating specific parts of the tongue. Leuven’s researchers attribute this phenomenon to a direct activation of TRPM5 in the taste buds. Indeed, at higher temperatures the sensitivity of TRPM5 increases to such a degree that it becomes activated in the absence of taste molecules, leading to a “thermal taste” signal to the brains.

Luc West | alfa
Further information:
http://www.nature.com/nature/journal/v438/n7070/abs/nature04248.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>