Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physiologists discover how temperature influences our taste

16.12.2005


The sweet taste of temperature



Why does a beer taste better if it comes from the fridge and does a warm beer taste bitter? Why is red Bordeaux wine best drunk at room temperature? And what causes that unique taste sensation of ice cream? Researchers from the Physiology section of the Katholieke Universiteit Leuven (K.U.Leuven, Belgium) have discovered, together with their Japanese and American colleagues, how the temperature sensitivity of our sense of taste works. Today, they publish their breakthrough in the top professional journal Nature.

How does taste recognition work?


People can distinguish five basic tastes: sour, sweet, salty, bitter, and umami (the Japanese term for the bouillon-like taste found in, for example, meat and mature cheeses). The perception of taste occurs in the taste buds in our tongue. These buds contain taste receptors, specialised proteins able to recognise sweet, bitter, and umami taste molecules in food and drinks. When taste molecules touch the taste receptors, microscopic channels – termed TRPM5 – open in the cell membrane of the taste buds. This causes an electric signal to arise in the taste buds that travels to the brain via nerve fibers, where it is translated into a specific taste sensation.

K.U.Leuven’s physiologists decipher the temperature sensitivity of our sense of taste

Physiologists from the university of Leuven have discovered that this Trpm5-channel in our taste buds is highly sensitive to changes in temperature. At 15ºC the channel scarcely opens, whereas at 37ºC its sensitivity is more than 100 times higher. The warmer the food or fluid in your mouth, that much stronger will TRPM5 react, and thus that much stronger is the electrical signal sent to the brain. For example, the sweet taste of ice cream will only be perceived when it melts and heats up in the mouth. If you serve the same ice cream warm, then the reaction of TRPM5 in your taste buds is much more intense and the taste of the melted ice cream is much sweeter.

Based on these findings, K.U.Leuven’s researchers now conclude in Nature that TRPM5 lies at the basis of our taste’s sensitivity to temperature. This was also confirmed in experiments on mice: taste responses increased dramatically when the temperature of sweet drinks was increased from 15°C to 37°C. This temperature sensitivity of sweet taste was entirely lacking in genetically altered mice that no longer produced the Trpm5 channel.

This research opens the way to the development of chemical substances influencing the functioning of the Trpm5-channels so as to suppress unpleasant tastes, for example, or to explore completely unprecedented and new taste experiences.

Finally, these results provide an explanation for a well known psychophysical experiment, whereby test persons experience taste sensations just by heating specific parts of the tongue. Leuven’s researchers attribute this phenomenon to a direct activation of TRPM5 in the taste buds. Indeed, at higher temperatures the sensitivity of TRPM5 increases to such a degree that it becomes activated in the absence of taste molecules, leading to a “thermal taste” signal to the brains.

Luc West | alfa
Further information:
http://www.nature.com/nature/journal/v438/n7070/abs/nature04248.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>