Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleeping sickness parasite shows how cells divide their insides

09.11.2005


Researchers at Yale have brought to light a mechanism that regulates the way an internal organelle, the Golgi apparatus, duplicates as cells prepare to divide, according to a report in Science Express.


Centrin (green), in a bi-lobed structure (filled arrowheads) associated with Golgi (red), shows growth of new Golgi and increasing separation from old Golgi accompanied by duplication and segregation of the bi-lobed structure. DNA is blue.



Graham Warren, professor of cell biology, and his colleagues at Yale study Trypanosoma brucei, the parasite that causes Sleeping Sickness. Like many parasites, it is exceptionally streamlined and has only one of each internal organelle, making it ideal for studying processes of more complex organisms that have many copies in each cell.

When thinking about how cells divide, doubling and separating DNA in chromosomes is often the focus. Equally important is the way a cell prepares its internal organelles for distribution. Warren studies the Golgi complex, a membrane compartment in the cytoplasm that delivers newly-made proteins to different membranes in the cell.


"Basal bodies in particular and centrosomes in general have been implicated in the biogenesis of a number of membrane-bound organelles," said Warren. "It prompted us to study further their role in Golgi duplication."

Warren’s group has identified a new cellular structure, distinct from the basal body, involved in the duplication of the Golgi apparatus and defined by a highly-conserved protein, Centrin2. This structure has two lobes -- one at the old Golgi, the other where the new Golgi forms. Once a new Golgi has grown, the Centrin structure itself duplicates so that two complete structures, and associated Golgi, are ready to be allocated to daughter cells.

Significant recent advances in the molecular genetics of trypanosomes by Elisabetta Ullu and Christian Tschudi’s group at Yale, allowed direct manipulation of protein levels using the innate RNA interference (RNAi) system.The relationship between the growing Golgi, the Centrin proteins and other cellular organelles was shown in experiments using RNAi, and visualizing the process was possible with fluorescent protein tags. How this process relates to higher organisms is the focus of present research.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>