Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleeping sickness parasite shows how cells divide their insides

09.11.2005


Researchers at Yale have brought to light a mechanism that regulates the way an internal organelle, the Golgi apparatus, duplicates as cells prepare to divide, according to a report in Science Express.


Centrin (green), in a bi-lobed structure (filled arrowheads) associated with Golgi (red), shows growth of new Golgi and increasing separation from old Golgi accompanied by duplication and segregation of the bi-lobed structure. DNA is blue.



Graham Warren, professor of cell biology, and his colleagues at Yale study Trypanosoma brucei, the parasite that causes Sleeping Sickness. Like many parasites, it is exceptionally streamlined and has only one of each internal organelle, making it ideal for studying processes of more complex organisms that have many copies in each cell.

When thinking about how cells divide, doubling and separating DNA in chromosomes is often the focus. Equally important is the way a cell prepares its internal organelles for distribution. Warren studies the Golgi complex, a membrane compartment in the cytoplasm that delivers newly-made proteins to different membranes in the cell.


"Basal bodies in particular and centrosomes in general have been implicated in the biogenesis of a number of membrane-bound organelles," said Warren. "It prompted us to study further their role in Golgi duplication."

Warren’s group has identified a new cellular structure, distinct from the basal body, involved in the duplication of the Golgi apparatus and defined by a highly-conserved protein, Centrin2. This structure has two lobes -- one at the old Golgi, the other where the new Golgi forms. Once a new Golgi has grown, the Centrin structure itself duplicates so that two complete structures, and associated Golgi, are ready to be allocated to daughter cells.

Significant recent advances in the molecular genetics of trypanosomes by Elisabetta Ullu and Christian Tschudi’s group at Yale, allowed direct manipulation of protein levels using the innate RNA interference (RNAi) system.The relationship between the growing Golgi, the Centrin proteins and other cellular organelles was shown in experiments using RNAi, and visualizing the process was possible with fluorescent protein tags. How this process relates to higher organisms is the focus of present research.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>