Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sleeping sickness parasite shows how cells divide their insides


Researchers at Yale have brought to light a mechanism that regulates the way an internal organelle, the Golgi apparatus, duplicates as cells prepare to divide, according to a report in Science Express.

Centrin (green), in a bi-lobed structure (filled arrowheads) associated with Golgi (red), shows growth of new Golgi and increasing separation from old Golgi accompanied by duplication and segregation of the bi-lobed structure. DNA is blue.

Graham Warren, professor of cell biology, and his colleagues at Yale study Trypanosoma brucei, the parasite that causes Sleeping Sickness. Like many parasites, it is exceptionally streamlined and has only one of each internal organelle, making it ideal for studying processes of more complex organisms that have many copies in each cell.

When thinking about how cells divide, doubling and separating DNA in chromosomes is often the focus. Equally important is the way a cell prepares its internal organelles for distribution. Warren studies the Golgi complex, a membrane compartment in the cytoplasm that delivers newly-made proteins to different membranes in the cell.

"Basal bodies in particular and centrosomes in general have been implicated in the biogenesis of a number of membrane-bound organelles," said Warren. "It prompted us to study further their role in Golgi duplication."

Warren’s group has identified a new cellular structure, distinct from the basal body, involved in the duplication of the Golgi apparatus and defined by a highly-conserved protein, Centrin2. This structure has two lobes -- one at the old Golgi, the other where the new Golgi forms. Once a new Golgi has grown, the Centrin structure itself duplicates so that two complete structures, and associated Golgi, are ready to be allocated to daughter cells.

Significant recent advances in the molecular genetics of trypanosomes by Elisabetta Ullu and Christian Tschudi’s group at Yale, allowed direct manipulation of protein levels using the innate RNA interference (RNAi) system.The relationship between the growing Golgi, the Centrin proteins and other cellular organelles was shown in experiments using RNAi, and visualizing the process was possible with fluorescent protein tags. How this process relates to higher organisms is the focus of present research.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>